2 resultados para 650200 Mining and Extraction

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, and Co) quantified in a Mount Everest ice core ( 6518 m above sea level) spanning the period 1650-2002 AD provides the first Asian record of trace element concentrations from the pre-industrial era, and the first continuous high-resolution Asian record from which natural baseline concentrations and subsequent changes due to anthropogenic activities can be examined. Modern concentrations of most elements remain within the pre-industrial range; however, Bi, U, and Cs concentrations and their enrichment factors (EF) have increased since the similar to 1950s, and S and Ca concentrations and their EFs have increased since the late 1980s. A comparison of the Bi, U, Cs, S, and Ca data with other ice core records and production data indicates that the increase in atmospheric concentrations of trace elements is widespread, but that enrichment varies regionally. Likely sources for the recent enrichment of these elements include mining, metal smelting, oil and coal combustion, and end uses for Bi, and mining and refinement for U and Cs. The source of the synchronous enrichment of Ca and S is less certain, but may be related to land use and environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I solved equations that describe coupled hydrolysis in and absorption from a continuously stirred tank reactor (CSTR), a plug flow reactor (PFR), and a batch reactor (BR) for the rate of ingestion and/or the throughput time that maximizes the rate of absorption (=gross rate of gain from digestion). Predictions are that foods requiring a single hydrolytic step (e.g., disaccharides) yield ingestion rates that vary inversely with the concentration of food substrate ingested, whereas foods that require multiple hydrolytic and absorptive reactions proceeding in parallel (e.g., proteins) yield maximal ingestion rates at intermediate substrate concentrations. Counterintuitively, then, animals acting to maximize their absorption rates should show compensatory ingestion (more rapid feeding on food of lower concentration), except for the lower range of diet quality fur complex diets and except for animals that show purely linear (passive) uptake. At their respective maxima in absorption rates, the PFR and BR yield only modestly higher rates of gain than the CSTR but do so at substantially lower rates of ingestion. All three ideal reactors show milder than linear reduction in rate of absorption when throughput or holding time in the gut is increased (e.g., by scarcity or predation hazard); higher efficiency of hydrolysis and extraction offset lower intake. Hence adding feeding costs and hazards of predation is likely to slow ingestion rates and raise absorption efficiencies substantially over the cost-free optima found here.