2 resultados para [psu]
em DigitalCommons - The University of Maine Research
Resumo:
Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary, Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.
Resumo:
The evolution of oceanographic conditions in the upwelling region off northern Chile (18 degrees-24 degrees S) between 1996 and 1998 (including the 1997-1998 El Niño) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, with sea surface temperature (SST), sea level, and wind speeds from Arica (18.5 degrees S), Iquique (20.5 degrees S), and Antofagasta (23.5 degrees S) and a time series of vertical temperature profiles off Iquique. Spatial patterns of sea surface temperature and salinity from May 1996 to March 1997 followed a normal seasonal progression, though conditions were anomalously cool and fresh. Starting in March 1997, positive anomalies in sea level and sea surface temperature propagated along the South American coast to 37 degrees S. Maximum sea level anomalies occurred in two peaks in May-July 1997 and October 1997 to February 1998, separated by a relaxation period. Maximum anomalies (2 degrees C and 0.1 practical salinity units (psu)) extended to 400 m in December 1997 within 50 km of the coast. March 1998 presented the largest surface anomalies (> 4 degrees C and 0.6 psu). Strong poleward flow (20-35 cm s(-1) ) occurred to 400 m or deeper during both sea level maxima and weaker (10 cm s(-1) ) equatorward flow followed each peak. By May 1998, SST had returned to the climatological mean, and flow was equatorward next to the coast. However, offshore salinity remained anomalously high owing to a tongue of subtropical water extending southeast along the Peruvian coast. Conditions off northern Chile returned to normal between August and December 1998. The timing of the anomalies suggests a connection to equatorial waves. The progression of the 1997-1998 El Niño was very similar to that of 1982-1983, though with different timing with respect to seasons.