3 resultados para [NH4] exc

em DigitalCommons - The University of Maine Research


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An NH4+ record covering the period A.D. 1845-1997 was reconstructed using an 80.4 m ice core from East Rongbuk Glacier at an elevation of 6450 m on the northern slope of Mount Everest. Variations in NH4+ are characterized by a dramatic increase since the 1950s. The highest NH4+ concentrations occur in the 1980s. They are about twofold more than those in the first half of twentieth century. Empirical orthogonal function (EOF) analysis on the eight major ion (Na+,K+,Mg2+,NH4+,Ca2+,NO3-,SO42- and Cl-) series from this core indicates that NH4+ is loaded mainly on EOF3 (60% of NH4+ variance), suggesting that NH4+ has a unique signature. Instrumental sea level pressure (SLP) and regional temperatures are used to explore the relationship between NH4+ variations and both atmospheric circulation and natural source strength over Asia. Higher NH4+ concentrations are associated with an enhanced winter Mongolian High and a deepened summer Mongolian Low. A positive relationship also exists between NH4+ concentrations and regional temperature changes of the GIS Box 36 (Indian subcontinent), indicating that an increase in temperature may contribute to the strengthening of natural ammonia emissions (e. g., from plants and soils). A close positive correlation between NH4+ and acidic species (SO42- plus NO3-) concentrations suggests that a portion of the increase in NH4+ concentrations could be contributed by enhanced atmospheric acidification. Anthropogenic ammonia emissions from enhanced agricultural activities and energy consumption over Asia in concert with population increase since the 1950s appear also to be a significant factor in the dramatic increase of NH4+ concentrations during the last few decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution chemical records from an 80.4 m ice core from the central Himalaya demonstrate climatic and environmental changes since 1844. The chronological net accumulation series shows a sharp decrease from the mid-1950s, which is coincident with the widely observed glacier retreat. A negative correlation is found between the ice-core delta(18)O record and the monsoon precipitation for Indian region 7. The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the Himalaya, and the dust-storm duration and frequency in the northern arid regions, such as the Taklimakan desert, China. The NH4+ profile is fairly flat until the 1940s, then substantially increases until the end of the 1980s, with a slight decrease during the 1990s which may reflect new agricultural practices. The SO42- and NO3- profiles show an apparent increasing trend, especially during the period 1940s-80s. Moreover, SO42- concentrations for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at Xixabangma, Himalaya, due to local human activity including that of climbing teams who use gasoline for cooking, energy and transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of phytoplankton and nutrients before, during and after the winter-spring bloom on Georges Bank were studied on 6 monthly survey cruises from January to June 1999. We measured hydrography, phytoplankton cell densities, chlorophyll a, dissolved inorganic nutrients (NO3 + NO2, NH4, Si(OH)(4), PO4), dissolved organic nitrogen (DON) and phosphorus (DOP), particulate organic carbon (POC) and nitrogen (PON) and total particulate phosphorus (TPP). We present evidence that phytoplankton production may be significant year-round, and that the winter-spring bloom may have started in January. From January to April the phytoplankton was comprised almost exclusively of diatoms, reaching cell densities in March and April of ca. 450 cells ml(-1); chlorophyll a concentrations exceeded 10 mug l(-1) in April. Diatoms decreased to relatively low levels in May (< 50 x 10(3) cells l(-1)) and increased again in June (>300 x 10(3) cells l(-1)). Densities of dinoflagellates and nanoflagellates were low (< 10 x 10(3) cells l(-1)) from January to April, and increased in May and June to nearly 300 x 10(3) cells l(-1). Nitrate + nitrite concentrations in January were <3 muM in the shallow, central portion of the bank and decreased steadily each month. Silicate was also <3 muM over an even larger area of the central bank in January and declined to <1.5 muM over most of the Bank in April. The data suggest that silicate depletion, not DIN, contributed to the cessation of the diatom bloom. Regeneration of silicate occurred in May and June, presumably as a result of rising water temperatures in late spring which increased the dissolution rate of diatom frustules from the earlier diatom bloom. Dissolved organic nitrogen may have been utilized at the start of the winter-spring bloom; concentrations were ca, 14 muM in January, dropping to < 6 mug l(-1) in February, after which DON concentrations steadily rose to > 15 mug l(-1) in June. Overall micro-and nanoplankton biomass, measured as POC, PON and TPP, increased over the 6 mo period, as did nutritional quality of that biomass as indicated by declining C:N ratios. Our results suggest there may have been an increase in the heterotrophic component of the plankton in May and June which coincided with a second burst in diatom abundance. We discuss general features of planktonic production and nutrient dynamics with respect to year-round production on the Bank.