19 resultados para (West)

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local rates of change in ice-sheet thickness were calculated at IS sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference between these two quantities represents a thickness change with time. Measurements were conducted at sites located similar to 100-200 km apart along US ITASE traverse routes, and at several isolated locations. All but one of the sites are distributed in the Siple Coast and the Amundsen Sea basin along contours of constant elevation, along flowlines, across ice divides and close to regions of enhanced flow. Calculated rates of thickness change are different from site to site. Most of the large rates of change in ice thickness (similar to 10 cm a(-1) or larger) are observed in or close to regions of rapid flow, and are probably related to ice-dynamics effects. Near-steady-state conditions are calculated mostly at sites in the slow-moving ice-sheet interior and near the main West Antarctic ice divide. These results are consistent with regional estimates of ice-sheet change derived from remote-sensing measurements at similar locations in West Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar heat is the acknowledged driving force for climatic change. However, ice sheets are also capable of causing climatic change. This property of ice sheets derives from the facts that ice and rock are crystalline whereas the oceans and atmosphere are fluids and that ice sheets are massive enough to depress the earth's crust well below sea level. These features allow time constants for glacial flow and isostatic compensation to be much larger than those for ocean and atmospheric circulation and therefore somewhat independent of the solar variations that control this circulation. This review examines the nature of dynamic processes in ice streams that give ice sheets their degree of independent behavior and emphasizes the consequences of viscoplastic instability inherent in anisotropic polycrystalline solids such as glacial ice. Viscoplastic instability and subglacial topography are responsible for the formation of ice streams near ice sheet margins grounded below sea level. As a result the West Antarctic marine ice sheet is inherently unstable and can be rapidly carved away by calving bays which migrate up surging ice streams. Analyses of tidal flexure along floating ice stream margins, stress and velocity fields in ice streams, and ice stream boundary conditions are presented and used to interpret ERTS 1 photomosaics for West Antarctica in terms of characteristic ice sheet crevasse patterns that can be used to monitor ice stream surges and to study calving bay dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry's (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry's (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate causes of the stratigraphic variation revealed in a 177 km, 400 MHz short-pulse radar profile of firn from West Antarctica. The profile covers 56 m depth, and its direction was close to those of the ice flow and mean wind. The average, near-surface accumulation rates calculated from the time delays of one radar horizon consistently show minima on leeward slopes and maxima on windward slopes, confirming an earlier study based on stake observations. The stratigraphic variation includes up to 30 m depth variation in individual horizons over tens of km, fold limbs that become progressively steeper with depth, and fold-hinge loci that change direction or propagate down-ice with depth over distances far less than predicted by the ice speeds. We use an accumulation rate model to show how local rate anomalies and the effect of ice speed upon a periodic variation in accumulation rate cause these phenomena, and we reproduce two key features seen in the stratigraphic variations. We conclude that the model provides an explanation of changes in spatial stratigraphy and local measures of accumulation history given the constraints of surface topography, ice and wind velocities, and a general accumulation rate for an area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and equatorial volcanism over the last 12,000 years using continuous glaciochemical series developed from the Siple Dome A (SDMA) ice core, West Antarctica. The largest volcanic sulfate spike ( 280 mu g/L) occurs at 5881 B. C. E. Other large signals with unknown sources are observed around 325 B. C. E. ( 270 mu g/L) and 2818 B. C. E. ( 191 mu g/L). Ages of several large equatorial or Southern Hemisphere volcanic eruptions are synchronous with many sulfate peaks detected in the SDMA volcanic ice chemistry record. The microprobe "fingerprinting'' of glass shards in the SDMA core points to the following Antarctic volcanic centers as sources of tephra found in the SDMA core: Balenny Island, Pleiades, Mount Berlin, Mount Takahe, and Mount Melbourne as well as Mount Hudson and possibly Mount Burney volcanoes of South America. Identified volcanic sources provide an insight into the poorly resolved transport history of volcanic products from source volcanoes to the West Antarctic ice sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO(4)(2-)) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to 1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO(4)(2-), and winter-time sea-salt peaks out of phase, with phase variation of < 1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow-accumulation rates and rates of ice-thickness change (mass balance) are studied at several sites on Siple Dome, West Antarctica. Accumulation rates are derived from analyses of gross beta radioactivity in shallow firn cores located along a 60 km transect spanning both flanks and the crest of the dome. There is a north-south gradient in snow-accumulation rate across the dome that is consistent with earlier radar mapping of internal stratigraphy. Orographic processes probably control this distribution. Mass balance is inferred from the difference between global positioning system (GPS)-derived vertical velocities and snow-accumulation rates for sites close to the firn-core locations. Results indicate that there is virtually no net thickness change at four of the five sites. The exception is at the northernmost site where a small amount of thinning is detected, that appears to be inconsistent with other studies. A possible cause of this anomalous thinning is recent retreat of the grounding line of Ice Stream D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO42- and excess (xs) SO42- is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000m. Our XsSO(4)(2-) records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO42- concentrations but do reveal that a major climate transition takes place over West Antarctica at similar to 1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO(4)(2-) records from sites located above 1000 m elevation but do not appear in the residual records from sites located below 1000 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We track dated firn horizons within 400 MHz short-pulse radar profiles to find the continuous extent over which they can be used as historical benchmarks to study past accumulation rates in West Antarctica. The 30-40 cm pulse resolution compares with the accumulation rates of most areas. We tracked a particular set that varied from 30 to 90 m in depth over a distance of 600 km. The main limitations to continuity are fading at depth, pinching associated with accumulation rate differences within hills and valleys, and artificial fading caused by stacking along dips. The latter two may be overcome through multi-kilometer distances by matching the relative amplitude and spacing of several close horizons, along with their pulse forms and phases. Modeling of reflections from thin layers suggests that the - 37 to - 50 dB range of reflectivity and the pulse waveforms we observed are caused by the numerous thin ice layers observed in core stratigraphy. Constructive interference between reflections from these close, high-density layers can explain the maintenance of reflective strength throughout the depth of the firn despite the effects of compaction. The continuity suggests that these layers formed throughout West Antarctica and possibly into East Antarctica as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen annually resolved accumulation-rate records covering the last similar to 200 years from the Pine Island-Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island-Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (Sol) for sites near the ice divide, and periods of sustained negative Sol (1940-42, 1991-95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the midlatitudes. The post-1970 increase in accumulation coupled with strong SLP-accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island-Thwaites drainage system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

lsochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25-185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of similar to 1 m a(-1). Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of delta(34)S covering the years 1935-76 and including the 1963 Agung (Indonesia) eruption were made on a West Antarctic firn core, RIDSA (78.73 degrees S, 116.33 degrees W; 1740m a.s.l.), and results are used to unravel potential source functions in the sulfur cycle over West Antarctica. The delta(34)S values Of SO42- range from 3.1 parts per thousand to 9.9 parts per thousand. These values are lower than those reported for central Antarctica, from near South Pole station, of 9.3-18.1 parts per thousand (Patris and others, 2000). While the Agung period is isotopically distinct at South Pole, it is not in the RIDSA dataset, suggesting differences in the source associations for the sulfur cycle between these two regions. Given the relatively large input of marine aerosols at RIDSA (determined from Na+ data and the seasonal SO42- cycle), there is likely a large marine biogenic SO42- influence. The delta(34)S values indicate, however, that this marine biogenic SO42-, with a well-established delta(34)S of 18 parts per thousand, is mixing with SO42- that has extremely negative delta(34)S values to produce the measured isotope values in the RIDSA core. We suggest that the transport and deposition of stratospheric SO42- in West Antarctica, combined with local volcanic input, accounts for the observed variance in delta(34)S values.