42 resultados para ice sheet


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ice streams are a fact of ice-sheet dynamics, draining up to 90% of the ice. Thermal convection in ice below the density inversion is a speculation. An attempt is made to meld the two in such a way that the speculation becomes an explanation for the fact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Local rates of change in ice-sheet thickness were calculated at IS sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference between these two quantities represents a thickness change with time. Measurements were conducted at sites located similar to 100-200 km apart along US ITASE traverse routes, and at several isolated locations. All but one of the sites are distributed in the Siple Coast and the Amundsen Sea basin along contours of constant elevation, along flowlines, across ice divides and close to regions of enhanced flow. Calculated rates of thickness change are different from site to site. Most of the large rates of change in ice thickness (similar to 10 cm a(-1) or larger) are observed in or close to regions of rapid flow, and are probably related to ice-dynamics effects. Near-steady-state conditions are calculated mostly at sites in the slow-moving ice-sheet interior and near the main West Antarctic ice divide. These results are consistent with regional estimates of ice-sheet change derived from remote-sensing measurements at similar locations in West Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jakobshavns Isbrae (69 degrees 10'N, 49 degrees 5'W) drains about 6.5% of the Greenland ice sheet and is the fastest ice stream known. The Jakobshavns Isbrae basin of about 10 000 km(2) was mapped photogrammetrically from four sets of aerial photography, two taken in July 1985 and two in July 1986. Positions and elevations of several hundred natural features on the ice surface were determined for each epoch by photogrammetric block-aerial triangulation, and surface velocity vectors were computed from the positions. The two flights in 1985 yielded the best results and provided most common points (716) for velocity determinations and are therefore used in the modeling studies. The data from these irregularly spaced points were used to calculate ice elevations and velocity vectors at uniformly spaced grid paints 3 km apart by interpolation. The field of surface strain rates was then calculated from these gridded data and used to compute the field of surface deviatoric stresses, using the flow law of ice, for rectilinear coordinates, X, Y pointing eastward and northward. and curvilinear coordinates, L, T pointing longitudinally and transversely to the changing ice-flow direction. Ice-surface elevations and slopes were then used to calculate ice thicknesses and the fraction of the ice velocity due to basal sliding. Our calculated ice thicknesses are in fair agreement with an ice-thickness map based on seismic sounding and supplied to us by K. Echelmeyer. Ice thicknesses were subtracted from measured ice-surface elevations to map bed topography. Our calculation shows that basal sliding is significant only in the 10-15 km before Jakobshavns Isbrae becomes afloat in Jakobshavns IsfJord.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From its original formulation in 1990 the International Trans-Antarctic Scientific Expedition (ITASE) has had as its primary aim the collection and interpretation of a continent-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. ITASE offers the ground-based opportunities of traditional-style traverse travel coupled with the modern technology of CPS, crevasse detecting radar, satellite communications and multidisciplinary research. By operating predominantly in the mode of an oversnow traverse, ITASE offers scientists the opportunity to experience the dynamic range of the Antarctic environment. ITASE also offers an important interactive venue for research similar to that afforded by oceanographic research vessels and large polar field camps, without the cost of the former or the lack of mobility of the latter. More importantly, the combination of disciplines represented by ITASE provides a unique, multidimensional (space and time) view of the ice sheet and its history. ITASE has now collected > 20 000 km of snow radar, recovered more than 240 firn/ice cores (total length 7000m), remotely penetrated to similar to 4000m into the ice sheet, and sampled the atmosphere to heights of > 20 km.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paleoglaciological concept that during the Pleistocene glacial hemi-cycles a super-large, structurally complex ice sheet developed in the Arctic and behaved as a single dynamic system, as the Antarctic ice sheet does today, has not yet been subjected to concerted studies designed to test the predictions of this concept. Yet, it may hold the keys to solutions of major problems of paleoglaciology, to understanding climate and sea-level changes. The Russian Arctic is the least-known region exposed to paleoglaciation by a hypothetical Arctic ice sheet but now it is more open to testing the concept. Implementation of these tests is a challenging task, as the region is extensive and the available data are controversial. Well-planned and coordinated field projects are needed today, as well as broad discussion of the known evidence, existing interpretations and new field results. Here we present the known evidence for paleoglaciation of the Russian Arctic continental shelf and reconstruct possible marine ice sheets that could have produced that evidence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mass balance calculation was made for the floating part of Byrd Glacier, using 1978-79 ice elevation and velocity data, over the 45 km of Byrd Glacier from its grounding line to where it leaves its fjord and merges with the Ross Ice Shelf. Smoothed basal melting rates were relatively uniform over this distance and averaged 12 +/- 2 m yr(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

McMurdo Dry Valleys (MDV, Ross Sea region, Antarctica) precipitation exhibits extreme seasonality in ion concentration, 3-5 orders of magnitude between summer and winter precipitation. To identify aerosol sources and investigate causes for the observed amplitude in concentration variability, four snow pits were sampled along a coast-Polar Plateau transect across the MDV. The elevation of the sites ranges from 50 to 2400 m and the distance from the coast from 8 to 93 km. Average chemistry gradients along the transect indicate that most species have either a predominant marine or terrestrial source in the MDV. Empirical orthogonal function analysis on the snow-chemistry time series shows that at least 57% of aerosol deposition occurs concurrently. A conceptual climate model, based on meteorological observations, is used to explain the strong seasonality in the MDV. Our results suggest that radiative forcing of the ice-free valleys creates a surface low-pressure cell during summer which promotes air-mass flow from the Ross Sea. The associated precipitating air mass is relatively warm, humid and contains a high concentration of aerosols. During winter, the MDV are dominated by air masses draining off the East Antarctic ice sheet, that are characterized by cold, dry and low concentrations of aerosols. The strong differences between these two air-mass sources create in the MDV a polar version of the monsoonal flow, with humid, warm summers and dry, cold winters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earth-orbiting satellites can now monitor calving of large icebergs from ice shelves bordering the marine West Antarctic Ice Sheet, and recent calving events have stimulated interest in calving mechanisms. To advance this interest pioneering work in brittle and ductile fracture mechanics is reviewed, leading to a new application to calving of giant icebergs from Antarctic ice shelves. The aim is to view iceberg calving as more than terminal events for Antarctic ice when glaciologists lose interest. Instead calving launches Antarctic ice into the larger dynamic system of Earth's climate machine. This encourages a holistic approach to glaciology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coastal portions of Kangerdlugssuaq and Helheim glaciers in southeast Greenland lost at least 51 +/- 8 km(-3) yr(-1) of ice between 2001-2006 due to thinning and retreat, according to an analysis of sequential digital elevation models (DEMs) derived from stereo ASTER satellite imagery. The dominant contribution to this ice loss was dynamic thinning caused by the acceleration in flow of both glaciers. Peak rates of change, including thinning rates of similar to 90 m yr(-1), coincided with the rapid increases in flow speed. Extrapolation of the measured data to the ice divides yields an estimated combined catchment volume loss of similar to 122 +/- 30 km(-3) yr(-1), which accounts for half the total mass loss from the ice sheet reported in recent studies. These catchment-wide volume losses contributed similar to 0.31 +/- 0.07 mm yr(-1) to global sea level rise over the 5-year observation period with the coastal regions alone contributing at least 0.1 +/- 0.02 mm yr(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Jakobshavns Effect may have been a significant factor in hastening the collapse of palaeo ice sheets with the advent of climatic warming after 18,000 years ago and may precipitate partial collapse of the present‐day Greenland and Antarctic Ice Sheets following CO2‐induced climatic warming in the decades ahead. The Jakobshavns Effect is observed today on Jakobshavns Glacier, which is located at 69°10′N on the west coast of Greenland. The Jakobshavns Effect is a group of positive feedback mechanisms which allow Jakobshavns Glacier to literally pull ice out of the Greenland Ice Sheet at a rate exceeding 7 km/a across a floating terminus 800 m thick and 6 km wide. The pulling power results from an imbalance of horizontal hydrostatic forces in ice and water columns at the grounding line of the floating terminus. Positive feedback mechanisms that sustain the rapid ice discharge rate are ubiquitous surface crevassing, high summer rates of surface melting, extending creep flow, progressive basal uncoupling, progressive lateral uncoupling, and rapid iceberg calving.