50 resultados para Antarctic Ice Sheet


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core. The data were interpreted manually and with a computer algorithm. The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, (BE)-B-10 stratigraphic ties to the dendrochronology C-14 record and the dated volcanic stratigraphy. The algorithm interpretation is more consistent and better quantified than the tedious and subjective manual interpretation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A geometrical force balance that links stresses to ice bed coupling along a flow band of an ice sheet was developed in 1988 for longitudinal tension in ice streams and published 4 years later. It remains a work in progress. Now gravitational forces balanced by forces producing tensile, compressive, basal shear, and side shear stresses are all linked to ice bed coupling by the floating fraction phi of ice that produces the concave surface of ice streams. These lead inexorably to a simple formula showing how phi varies along these flow bands where surface and bed topography are known: phi = h(O)/h(I) with h(O) being ice thickness h(I) at x = 0 for x horizontal and positive upslope from grounded ice margins. This captures the basic fact in glaciology: the height of ice depends on how strongly ice couples to the bed. It shows how far a high convex ice sheet (phi = 0) has gone in collapsing into a low flat ice shelf (phi = 1). Here phi captures ice bed coupling under an ice stream and h(O) captures ice bed coupling beyond ice streams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid unloading of ice from the southeastern sector of the Greenland ice sheet between 2001 and 2006 caused an elastic uplift of similar to 35 mm at a GPS site in Kulusuk. Most of the uplift results from ice dynamic-induced volume losses on two nearby outlet glaciers. Volume loss from Helheim Glacier, calculated from sequential digital elevation models, contributes about similar to 16 mm of the observed uplift, with an additional similar to 5 mm from volume loss of Kangerdlugssuaq Glacier. The remaining uplift signal is attributed to significant melt-induced ice volume loss from the ice sheet margin along the southeast coast between 62 degrees N and 66 degrees N.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Snow-accumulation rates are known to be sensitive to local changes in ice-sheet surface slope because of the effect of katabatic winds. These topographic effects can be preserved in ice cores that are collected at non-ice-divide locations. The trajectory of an ice-core site at South Pole is reconstructed using measurements of ice-sheet motion to show that snow was probably deposited at places of different surface slope during the past 1000 years. Recent accumulation rates, derived from shallow firn cores, vary along this trajectory according to surface topography, so that on a relatively steep flank mean annual accumulation is similar to 18% smaller than on a nearby topographic depression. These modern accumulation rates are used to reinterpret the cause of accumulation rate variability with time in the long ice-core record as an ice-dynamics effect and not a climate-change signal. The results highlight the importance of conducting ancillary ice-dynamics measurements as part of ice-coring programs so that topographic effects can be deconvolved from potential climate signals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ice sheet thickness is determined mainly by the strength of ice-bed coupling that controls holistic transitions from slow sheet flow to fast streamflow to buttressing shelf flow. Byrd Glacier has the largest ice drainage system in Antarctica and is the fastest ice stream entering Ross Ice Shelf. In 2004 two large subglacial lakes at the head of Byrd Glacier suddenly drained and increased the terminal ice velocity of Byrd Glacier from 820 m yr(-1) to 900 m yr(-1). This resulted in partial ice-bed recoupling above the lakes and partial decoupling along Byrd Glacier. An attempt to quantify this behavior is made using flowband and flowline models in which the controlling variable for ice height above the bed is the floating fraction phi of ice along the flowband and flowline. Changes in phi before and after drainage are obtained from available data, but more reliable data in the map plane are required before Byrd Glacier can be modeled adequately. A holistic sliding velocity is derived that depends on phi, with contributions from ice shearing over coupled beds and ice stretching over uncoupled beds, as is done in state-of-the-art sliding theories.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thirteen annually resolved accumulation-rate records covering the last similar to 200 years from the Pine Island-Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island-Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (Sol) for sites near the ice divide, and periods of sustained negative Sol (1940-42, 1991-95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the midlatitudes. The post-1970 increase in accumulation coupled with strong SLP-accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island-Thwaites drainage system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The isotopic and chemical signatures for ice-age and Holocene ice from Summit, Greenland and Penny Ice Cap, Baffin Island, Canada, arc compared. The usual pattern of low delta(18)O, high Ca2+ and high Cl- is presented in the Summit records, but Penny Ice Cap has lower than present Cl- in its ice-age ice. A simple extension of the Hansson model (Hansson, 1994) is developed and used to simulate these signatures. The low ice-age Cl- from Penny Ice Cap is explained by having the ice-age ice originating many thousands of km inland near the centre of the Laurentide ice sheet and much further from the marine sources. Summit's flowlines all start close to the present site. The Penny Ice Cap early-Holocene delta(18)O's had to be corrected to offset the Laurentide meltwater distortion. The analysis suggests that presently the Summit and Penny Ice Cap marine impurity originates about,500 km away, and that presently Penny Ice Cap receives a significant amount of local continental impurity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have measured the CO2 concentration of air occluded during the last 40,000 years in the deep Siple Dome A ( hereafter Siple Dome) ice core, Antarctica. The general trend of CO2 concentration from Siple Dome ice follows the temperature inferred from the isotopic composition of the ice and is mostly in agreement with other Antarctic ice core CO2 records. CO2 rose initially at similar to 17.5 kyr B. P. ( thousand years before 1950), decreased slowly during the Antarctic Cold Reversal, rose during the Younger Dryas, fell to a local minimum at around 8 kyr B. P., and rose continuously since then. The CO2 concentration never reached steady state during the Holocene, as also found in the Taylor Dome and EPICA Dome C ( hereafter Dome C) records. During the last glacial termination, a lag of CO2 versus Siple Dome isotopic temperature is probable. The Siple Dome CO2 concentrations during the last glacial termination and in the Holocene are at certain times greater than in other Antarctic ice cores by up to 20 ppm (mumol CO2/mol air). While in situ production of CO2 is one possible cause of the sporadic elevated levels, the mechanism leading to the enrichment is not yet clear.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bending shear was observed to produce nearly vertical shear bands in a calving ice wall standing on dry land on Deception Island (Iat. 63.0 oS., long. 60.6 W.), and slabs calved straight downward when shear rupture occurred along these shear bands (Hughes, 1989). A formula for the calving rate was developed from the Deception Island data, and we have attempted to justify generalizing this formula to include ice walls standing along beaches or in water. These are environments in which a wave-washed groove develops along the base of the ice wall or along a water line above the base. The rate of wave erosion provides an alternative mechanism for controlling the calving rate in these environments. We have determined that the rate at which bending creep produces nearly vertical shear bands, along which shear r upture occurs, controls the calving rate in all environments. Shear rupture occurs at a calving shear stress of about I bar. Our results justify using the calving formula to compute the calving rate of ice walls in computer models of ice-sheet dynamics. This is especially important in simulating retreat of Northern Hemisphere ice sheets during the last deglaciation, when marine and lacustrine environments were common along retreating ice margins. These margins would have been ice walls standing along beaches or in water, because floating ice shelves are not expected in the ablation zone of retreating ice sheets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review assesses the circumpolar occurrence of emerged marine macrofossils and sediments from Antarctic coastal areas in relation to Late Quaternary climate changes. Radiocarbon ages of the macrofossils, which are interpreted in view of the complexities of the Antarctic marine radiocarbon reservoir and resolution of this dating technique, show a bimodal distribution. The data indicate that marine species inhabited coastal environments from at least 35000 to 20000 yr sp, during Marine Isotope Stage 3 when extensive iceberg calving created a 'meltwater lid' over the Southern Ocean. The general absence of these marine species from 20000 to 8500 yr sp coincides with the subsequent advance of the Antarctic ice sheets during the Last Glacial Maximum. Synchronous re-appearance of the Antarctic marine fossils in emerged beaches around the continent, all of wh ich have Holocene marine-limit elevations an order of magnitude lower than those in the Arctic, reflect minimal isostatic rebound as relative sea-level rise decelerated. Antarctic coastal marine habitat changes around the continent also coincided with increasing sea-ice extent and outlet glacial advances during the mid-Holocene. in view of the diverse environmental changes that occurred around the Earth during this period, it is suggested that Antarctic coastal areas were responding to a mid-Holocene climatic shift associated with the hydrological cycle. This synthesis of Late Quaternary emerged marine deposits demonstrates the application of evaluating circum-Antarctic phenomena from the glacial-terrestrial-marine transition zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12-36 h for surface runoff to reach the bed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A volcanic signal observed in ice cores from both polar regions six years prior to Tambora is attributed to an unknown tropical eruption in 1809. Recovery of dacitic tephra from the 1809 horizon in a Yukon ice core ( Eclipse) that is chemically distinct from andesitic 1809 tephra found in Antarctic ice cores indicates a second eruption in the Northern Hemisphere at this time. Together with the similar magnitude and timing of the 1809 volcanic signal in the Arctic and Antarctic, this could suggest a large tropical eruption produced the sulfate and Antarctic tephra and a minor Northern Hemisphere eruption produced the Eclipse tephra. Nonetheless, the possibility that there were coincidental eruptions of similar magnitude in both hemispheres, rather than a single tropical eruption, should not be discounted. Correctly attributing the source of the 1809 volcanic signal has important implications for modeling the magnitude and latitudinal distribution of volcanic radiative forcing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Jakobshavns Effect may have been a significant factor in hastening the collapse of palaeo ice sheets with the advent of climatic warming after 18,000 years ago and may precipitate partial collapse of the present‐day Greenland and Antarctic Ice Sheets following CO2‐induced climatic warming in the decades ahead. The Jakobshavns Effect is observed today on Jakobshavns Glacier, which is located at 69°10′N on the west coast of Greenland. The Jakobshavns Effect is a group of positive feedback mechanisms which allow Jakobshavns Glacier to literally pull ice out of the Greenland Ice Sheet at a rate exceeding 7 km/a across a floating terminus 800 m thick and 6 km wide. The pulling power results from an imbalance of horizontal hydrostatic forces in ice and water columns at the grounding line of the floating terminus. Positive feedback mechanisms that sustain the rapid ice discharge rate are ubiquitous surface crevassing, high summer rates of surface melting, extending creep flow, progressive basal uncoupling, progressive lateral uncoupling, and rapid iceberg calving.