72 resultados para ice skating
Resumo:
A Mt. Everest ice core spanning 1860-2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. BC concentrations from 1975-2000 relative to 1860-1975 have increased approximately threefold, indicating that BC from anthropogenic sources is being transported to high elevation regions of the Himalaya. The timing of the increase in BC is consistent with BC emission inventory data from South Asia and the Middle East, however since 1990 the ice core BC record does not indicate continually increasing BC concentrations. The Everest BC and dust records provide information about absorbing impurities that can contribute to glacier melt by reducing the albedo of snow and ice. There is no increasing trend in dust concentrations since 1860, and estimated surface radiative forcing due to BC in snow exceeds that of dust in snow. This suggests that a reduction in BC emissions may be an effective means to reduce the effect of absorbing impurities on snow albedo and melt, which affects Himalayan glaciers and the availability of water resources in major Asian rivers. Citation: Kaspari, S. D., M. Schwikowski, M. Gysel, M. G. Flanner, S. Kang, S. Hou, and P. A. Mayewski (2011), Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD, Geophys. Res. Lett., 38, L04703, doi: 10.1029/2010GL046096.
Resumo:
High-resolution major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, and Co) quantified in a Mount Everest ice core ( 6518 m above sea level) spanning the period 1650-2002 AD provides the first Asian record of trace element concentrations from the pre-industrial era, and the first continuous high-resolution Asian record from which natural baseline concentrations and subsequent changes due to anthropogenic activities can be examined. Modern concentrations of most elements remain within the pre-industrial range; however, Bi, U, and Cs concentrations and their enrichment factors (EF) have increased since the similar to 1950s, and S and Ca concentrations and their EFs have increased since the late 1980s. A comparison of the Bi, U, Cs, S, and Ca data with other ice core records and production data indicates that the increase in atmospheric concentrations of trace elements is widespread, but that enrichment varies regionally. Likely sources for the recent enrichment of these elements include mining, metal smelting, oil and coal combustion, and end uses for Bi, and mining and refinement for U and Cs. The source of the synchronous enrichment of Ca and S is less certain, but may be related to land use and environmental change.
Resumo:
The presence of surface meltwater on ice caps and ice sheets is an important glaciological and climatological characteristic. We describe an algorithm for estimating the depth and hence volume of surface melt ponds using multispectral ASTER satellite imagery. The method relies on reasonable assumptions about the albedo of the bottom surface of the ponds and the optical attenuation characteristics of the ponded meltwater. We apply the technique to sequences of satellite imagery acquired over the western margin of the Greenland Ice Sheet to derive changes in melt pond extent and volume during the period 2001 - 2004. Results show large intra- and interannual changes in ponded water volumes, and large volumes of liquid water stored in extensive slush zones.
Resumo:
The rapid unloading of ice from the southeastern sector of the Greenland ice sheet between 2001 and 2006 caused an elastic uplift of similar to 35 mm at a GPS site in Kulusuk. Most of the uplift results from ice dynamic-induced volume losses on two nearby outlet glaciers. Volume loss from Helheim Glacier, calculated from sequential digital elevation models, contributes about similar to 16 mm of the observed uplift, with an additional similar to 5 mm from volume loss of Kangerdlugssuaq Glacier. The remaining uplift signal is attributed to significant melt-induced ice volume loss from the ice sheet margin along the southeast coast between 62 degrees N and 66 degrees N.
Resumo:
East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf
Resumo:
Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO(4)(2-)) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to 1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO(4)(2-), and winter-time sea-salt peaks out of phase, with phase variation of < 1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.
Resumo:
Snow-accumulation rates are known to be sensitive to local changes in ice-sheet surface slope because of the effect of katabatic winds. These topographic effects can be preserved in ice cores that are collected at non-ice-divide locations. The trajectory of an ice-core site at South Pole is reconstructed using measurements of ice-sheet motion to show that snow was probably deposited at places of different surface slope during the past 1000 years. Recent accumulation rates, derived from shallow firn cores, vary along this trajectory according to surface topography, so that on a relatively steep flank mean annual accumulation is similar to 18% smaller than on a nearby topographic depression. These modern accumulation rates are used to reinterpret the cause of accumulation rate variability with time in the long ice-core record as an ice-dynamics effect and not a climate-change signal. The results highlight the importance of conducting ancillary ice-dynamics measurements as part of ice-coring programs so that topographic effects can be deconvolved from potential climate signals.
Resumo:
Two Himalayan ice cores display a factor-two decreasing trend of air content over the past two millennia, in contrast to the relatively stable values in Greenland and Antarctica ice cores over the same period. Because the air content can be related with the relative frequency and intensity of melt phenomena, its variations along the Himalayan ice cores provide an indication of summer temperature trend. Our reconstruction point toward an unprecedented warming trend in the 20th century but does not depict the usual trends associated with "Medieval Warm Period" (MWP), or "Little Ice Age" (LIA).
Resumo:
Ice sheet thickness is determined mainly by the strength of ice-bed coupling that controls holistic transitions from slow sheet flow to fast streamflow to buttressing shelf flow. Byrd Glacier has the largest ice drainage system in Antarctica and is the fastest ice stream entering Ross Ice Shelf. In 2004 two large subglacial lakes at the head of Byrd Glacier suddenly drained and increased the terminal ice velocity of Byrd Glacier from 820 m yr(-1) to 900 m yr(-1). This resulted in partial ice-bed recoupling above the lakes and partial decoupling along Byrd Glacier. An attempt to quantify this behavior is made using flowband and flowline models in which the controlling variable for ice height above the bed is the floating fraction phi of ice along the flowband and flowline. Changes in phi before and after drainage are obtained from available data, but more reliable data in the map plane are required before Byrd Glacier can be modeled adequately. A holistic sliding velocity is derived that depends on phi, with contributions from ice shearing over coupled beds and ice stretching over uncoupled beds, as is done in state-of-the-art sliding theories.
Resumo:
Calving has been studied for glaciers ranging from slow polar glaciers that calve on dry land, such as on Deception Island (63.0-degrees-S, 60.6-degrees-W) in Antarctica, through temperate Alaskan tide-water glaciers, to fast outlet glaciers that float in fiords and calve in deep water, such as Jakobshavns Isbrae (69.2-degrees-N, 49.9-degrees-W) in Greenland. Calving from grounded ice walls and floating ice shelves is the main ablation mechanism for the Antarctic and Greenland ice sheets, as it was along marine and lacustrine margins of former Pleistocene ice sheets, and is for tide-water and polar glaciers. Yet, the theory of ice calving is underdeveloped because of inherent dangers in obtaining field data to test and constrain calving models. An attempt is made to develop a calving theory for ice walls grounded in water of variable depth, and to relate slab calving from ice walls to tabular calving from ice shelves. A calving law is derived in which calving rates from ice walls are controled by bending creep behind the ice wall, and depend on wall height h, forward bending angle-theta, crevasse distance c behind the ice wall and depth d of water in front of the ice wall. Reasonable agreement with calving rates reported by Brown and others (1982) for Alaskan tide-water glaciers is obtained when c depends on wall height, wall height above water and water depth. More data are needed to determine which of these dependencies is correct. A calving ratio c/h is introduced to understand the transition from slab calving to tabular calving as water deepens and the calving glacier becomes afloat.
Resumo:
A high-resolution, 8000 year-long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans-Pacific lead (Pb) pollution by ca. 1730, and a > 10-fold increase in Pb concentration (1981-1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970-1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans-Pacific transport efficiency signal related to the strength of the Aleutian Low.
Resumo:
A Mount Everest ice core analyzed at high resolution for major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co) and spanning the period A. D. 1650- 2002 is used to investigate the sources of and variations in atmospheric dust through time. The chemical composition of dust varies seasonally, and peak dust concentrations occur during the winter-spring months. Significant correlations between the Everest dust record and dust observations at stations suggest that the Everest record is representative of regional variations in atmospheric dust loading. Back-trajectory analysis in addition to a significant correlation of Everest dust concentrations and the Total Ozone Mapping Spectrometer (TOMS) aerosol index indicates that the dominant winter sources of dust are the Arabian Peninsula, Thar Desert, and northern Sahara. Factors that contribute to dust generation at the surface include soil moisture and temperature, and the long-range transport of dust aerosols appears to be sensitive to the strength of 500-mb zonal winds. There are periods of high dust concentration throughout the 350-yr Mount Everest dust record; however, there is an increase in these periods since the early 1800s. The record was examined for recent increases in dust emissions associated with anthropogenic activities, but no recent dust variations can be conclusively attributed to anthropogenic inputs of dust.
Resumo:
The rate of ice-sheet thickness change is calculated for 10 sites in Greenland by comparing measured values of ice vertical velocity and snow-accumulation rate. Vertical velocities are derived from repeat surveys of markers using precision global positioning system techniques, and accumulation rates are determined from stratigraphic analysis of firn cores. The results apply to time-scales covered by the firn-core records, which in most cases are a few decades. A spectrum of thickness-change rates is obtained, ranging from substantial thinning to slow thickening. The sites where ice-sheet thinning is indicated are located near the ice-sheet margin or in outlet glacier catchments. Interior and high-elevation sites are predominantly in balance or thickening slowly. Uncertainties in the rates of thickness change are dominated by errors in the determination of accumulation rates. The results of this work are broadly comparable with regional estimates of mass balance obtained from the analysis of catchment input vs discharge.
Resumo:
The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approximately the same position over the past similar to 50 years. There is no evidence of a change in ice motion between 1968 and 2001, based on a comparison of velocities derived from terrestrial surveying and feature tracking using sequential satellite images. Estimates of flux near the entrance to the fjord vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier.