22 resultados para Antarctic Treaty (1959)
Resumo:
The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (similar to the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.
Resumo:
Ice-core chemistry data from Victoria Lower Glacier, Antarctica, suggest, at least for the last 50 years, a direct influence of solar activity variations on the McMurdo Dry Valleys (MDV) climate system via controls on air-mass input from two competing environments: the East Antarctic ice sheet and the Ross Sea. During periods of increased solar activity, when total solar irradiance is relatively high, the MDV climate system appears to be dominated by air masses originating from the Ross Sea, leading to higher aerosol deposition. During reduced solar activity, the Antarctic interior seems to be the dominant air-mass source, leading to lower aerosol concentration in the ice-core record. We propose that the sensitivity of the MDV to variations in solar irradiance is caused by strong albedo differences between the ice-free MDV and the ice sheet.
Resumo:
We report evidence of a large proglacial lake (Glacial Lake Wright) that existed in Wright Valley in the McMurdo Dry Valleys region of Antarctica at the last glacial maximum (LGM) and in the early Holocene. At its highstands, Glacial Lake Wright would have stretched 50 km and covered c. 210 km(2). Chronology for lake-level changes comes from 30 AMS radiocarbon dates of lacustrine algae preserved in deltas, shorelines, and glaciolacustrine deposits that extend up to 480 m above present-day lakes. Emerging evidence suggests that Glacial Lake Wright was only one of a series of large lakes to occupy the McMurdo Dry Valleys and the valleys fronting the Royal Society Range at the LGM. Although the cause of such high lake levels is not well understood, it is believed to relate to cool, dry conditions which produced fewer clouds, less snowfall, and greater amounts of absorbed radiation, leading to increased meltwater production.
Resumo:
A procedure is presented for using a simple flowline model to calculate the fraction of the bed that is thawed beneath present-day ice sheets, and therefore for mapping thawed, frozen, melting and freezing basal thermal zones. The procedure is based on the proposition, easily demonstrated, that variations in surface slope along ice flowlines are due primarily to variations in bed topography and ice-bed coupling, where ice-bed coupling for sheet flow is represented by the basal thawed fraction. This procedure is then applied to the central flowlines of flow bands on the Antarctic ice sheet where accumulation rates, surface elevations and bed topography are mapped with sufficient accuracy, and where sheet flow rather than stream flow prevails. In East Antarctica, the usual condition is a low thawed fraction in subglacial highlands, but a high thawed fraction in subglacial basins and where ice converges on ice streams. This is consistent with a greater depression of the basal melting temperature and a slower rate of conducting basal heat to the surface where ice is thick, and greater basal frictional heat production where ice flow is fast, as expected for steady-state flow. This correlation is reduced or even reversed where steady-state flow has been disrupted recently, notably where ice-stream surges produced the Dibble and Dalton Iceberg Tongues, both of which are now stagnating. In West Antarctica, for ice draining into the Pine Island Bay polynya of the Amundsen Sea, the basal thawed fraction is consistent with a prolonged and ongoing surge of Pine Island Glacier and with a recently initiated surge of Thwaites Glacier. For ice draining into the Ross Ice Shelf, long ice streams extend nearly to the West Antarctic ice divide. Over the rugged bed topography near the ice divide, no correlation consistent with steady-state sheet flow exists between ice thickness and the basal thawed fraction. The bed is wholly thawed beneath ice streams, even where stream flow is slow. This is consistent with ongoing gravitational collapse of ice entering the Ross Sea embayment and with unstable flow in the ice streams.
Resumo:
We present a reconstruction of Antarctic mean surface temperatures over the past two centuries based on water stable isotope records from high-resolution, precisely dated ice cores. Both instrumental and reconstructed temperatures indicate large interannual to decadal scale variability, with the dominant pattern being anti-phase anomalies between the main Antarctic continent and the Antarctic Peninsula region. Comparative analysis of the instrumental Southern Hemisphere (SH) mean temperature record and the reconstruction suggests that at longer timescales, temperatures over the Antarctic continent vary in phase with the SH mean. Our reconstruction suggests that Antarctic temperatures have increased by about 0.2 degrees C since the late nineteenth century. The variability and the long-term trends are strongly modulated by the SH Annular Mode in the atmospheric circulation.
Resumo:
This review assesses the circumpolar occurrence of emerged marine macrofossils and sediments from Antarctic coastal areas in relation to Late Quaternary climate changes. Radiocarbon ages of the macrofossils, which are interpreted in view of the complexities of the Antarctic marine radiocarbon reservoir and resolution of this dating technique, show a bimodal distribution. The data indicate that marine species inhabited coastal environments from at least 35000 to 20000 yr sp, during Marine Isotope Stage 3 when extensive iceberg calving created a 'meltwater lid' over the Southern Ocean. The general absence of these marine species from 20000 to 8500 yr sp coincides with the subsequent advance of the Antarctic ice sheets during the Last Glacial Maximum. Synchronous re-appearance of the Antarctic marine fossils in emerged beaches around the continent, all of wh ich have Holocene marine-limit elevations an order of magnitude lower than those in the Arctic, reflect minimal isostatic rebound as relative sea-level rise decelerated. Antarctic coastal marine habitat changes around the continent also coincided with increasing sea-ice extent and outlet glacial advances during the mid-Holocene. in view of the diverse environmental changes that occurred around the Earth during this period, it is suggested that Antarctic coastal areas were responding to a mid-Holocene climatic shift associated with the hydrological cycle. This synthesis of Late Quaternary emerged marine deposits demonstrates the application of evaluating circum-Antarctic phenomena from the glacial-terrestrial-marine transition zone.
Resumo:
Stable oxygen analyses and snow accumulation rates from snow pits sampled in the McMurdo Dry Valleys have been used to reconstruct variations in summer temperature and moisture availability over the last four decades. The temperature data show a common interannual variability, with strong regional warmings occurring especially in 1984/85, 1995/96 and 1990/91 and profound coolings during 1977/78, 1983/84, 1988/89, 1993/94, and 1996/97. Annual snow accumulation shows a larger variance between sites, but the early 1970s, 1984, 1997, and to a lesser degree 1990/91 are characterized overall by wetter conditions, while the early and late 1980s show low snow accumulation values. Comparison of the reconstructed and measured summer temperatures with the Southern Oscillation Index (SOI) and the Antarctic Oscillation (AAO) yield statistically significant correlations, which improve when phaserelationships are considered. A distinct change in the phase relationship of the correlation is observed, with the SOI-AAO leading over the temperature records by one year before, and lagging by one year after 1988. These results suggest that over the last two decades summer temperatures are influenced by opposing El Niho Southern Oscillation and AAO forcings and support previous studies that identified a change in the Tropical-Antarctic teleconnection between the 1980s and 1990s.