4 resultados para subgrid-scale model

em University of Connecticut - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Everglades Depth Estimation Network (EDEN) is an integrated network of realtime water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (2000-present), online water-stage and water-depth information for the entire freshwater portion of the Greater Everglades. Continuous daily spatial interpolations of the EDEN network stage data are presented on grid with 400-square-meter spacing. EDEN offers a consistent and documented dataset that can be used by scientists and managers to: (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan (CERP) (U.S. Army Corps of Engineers, 1999). The target users are biologists and ecologists examining trophic level responses to hydrodynamic changes in the Everglades. The first objective of this report is to validate the spatially continuous EDEN water-surface model for the Everglades, Florida developed by Pearlstine et al. (2007) by using an independent field-measured data-set. The second objective is to demonstrate two applications of the EDEN water-surface model: to estimate site-specific ground elevation by using the validated EDEN water-surface model and observed water depth data; and to create water-depth hydrographs for tree islands. We found that there are no statistically significant differences between model-predicted and field-observed water-stage data in both southern Water Conservation Area (WCA) 3A and WCA 3B. Tree island elevations were derived by subtracting field water-depth measurements from the predicted EDEN water-surface. Water-depth hydrographs were then computed by subtracting tree island elevations from the EDEN water stage. Overall, the model is reliable by a root mean square error (RMSE) of 3.31 cm. By region, the RMSE is 2.49 cm and 7.77 cm in WCA 3A and 3B, respectively. This new landscape-scale hydrological model has wide applications for ongoing research and management efforts that are vital to restoration of the Florida Everglades. The accurate, high-resolution hydrological data, generated over broad spatial and temporal scales by the EDEN model, provides a previously missing key to understanding the habitat requirements and linkages among native and invasive populations, including fish, wildlife, wading birds, and plants. The EDEN model is a powerful tool that could be adapted for other ecosystem-scale restoration and management programs worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The holdout problem is commonly cited as the justification for eminent domain, but the nature of the problem is not well understood. This paper models the holdout problem in a bargaining framework, where a developer seeks to acquire several parcels of land for a large-scale development. We show that in the absence of eminent domain, holdouts are inevitable, threatening costly delay. However, if the developer has the power to use eminent domain to acquire the land from holdouts, all sellers will bargain, thus avoiding delay. An offsetting cost is that owners may negotiate prices below their true value, possibly resulting in excessive transfer of land to the developer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends the existing research on real estate investment trust (REIT) operating efficiencies. We estimate a stochastic-frontier panel-data model specifying a translog cost function, covering 1995 to 2003. The results disagree with previous research in that we find little evidence of scale economies and some evidence of scale diseconomies. Moreover, we also generally find smaller inefficiencies than those shown by other REIT studies. Contrary to previous research, the results also show that self-management of a REIT associates with more inefficiency when we measure output with assets. When we use revenue to measure output, selfmanagement associates with less inefficiency. Also contrary with previous research, higher leverage associates with more efficiency. The results further suggest that inefficiency increases over time in three of our four specifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends the existing research on real estate investment trust (REIT) operating efficiencies. We estimate stochastic-frontier, panel-data models specifying a translog cost function. The specified model updates the cost frontier with new information as it becomes available over time. The model can identify frontier cost improvements, returns to scale, and cost inefficiencies over time. The results disagree with most previous research in that we find no evidence of scale economies and some evidence of scale diseconomies. Moreover, we also generally find smaller inefficiencies than those shown by other REIT studies. Contrary to previous research, higher leverage associates with more efficiency.