2 resultados para ripple algorithm
em University of Connecticut - USA
Resumo:
Diamonds are known for both their beauty and their durability. Jefferson National Lab in Newport News, VA has found a way to utilize the diamond's strength to view the beauty of the inside of the atomic nucleus with the hopes of finding exotic forms of matter. By firing very fast electrons at a diamond sheet no thicker than a human hair, high energy particles of light known as photons are produced with a high degree of polarization that can illuminate the constituents of the nucleus known as quarks. The University of Connecticut Nuclear Physics group has responsibility for crafting these extremely thin, high quality diamond wafers. These wafers must be cut from larger stones that are about the size of a human finger, and then carefully machined down to the final thickness. The thinning of these diamonds is extremely challenging, as the diamond's greatest strength also becomes its greatest weakness. The Connecticut Nuclear Physics group has developed a novel technique to assist industrial partners in assessing the quality of the final machining steps, using a technique based on laser interferometry. The images of the diamond surface produced by the interferometer encode the thickness and shape of the diamond surface in a complex way that requires detailed analysis to extract. We have developed a novel software application to analyze these images based on the method of simulated annealing. Being able to image the surface of these diamonds without requiring costly X-ray diffraction measurements allows rapid feedback to the industrial partners as they refine their thinning techniques. Thus, by utilizing a material found to be beautiful by many, the beauty of nature can be brought more clearly into view.
Resumo:
We examine the time-series relationship between housing prices in Los Angeles, Las Vegas, and Phoenix. First, temporal Granger causality tests reveal that Los Angeles housing prices cause housing prices in Las Vegas (directly) and Phoenix (indirectly). In addition, Las Vegas housing prices cause housing prices in Phoenix. Los Angeles housing prices prove exogenous in a temporal sense and Phoenix housing prices do not cause prices in the other two markets. Second, we calculate out-of-sample forecasts in each market, using various vector autoregessive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different cities. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.