3 resultados para parametric correlation structure
em University of Connecticut - USA
Resumo:
This paper examines how preference correlation and intercorrelation combine to influence the length of a decentralized matching market's path to stability. In simulated experiments, marriage markets with various preference specifications begin at an arbitrary matching of couples and proceed toward stability via the random mechanism proposed by Roth and Vande Vate (1990). The results of these experiments reveal that fundamental preference characteristics are critical in predicting how long the market will take to reach a stable matching. In particular, intercorrelation and correlation are shown to have an exponential impact on the number of blocking pairs that must be randomly satisfied before stability is attained. The magnitude of the impact is dramatically different, however, depending on whether preferences are positively or negatively intercorrelated.
Resumo:
Motivation: Population allele frequencies are correlated when populations have a shared history or when they exchange genes. Unfortunately, most models for allele frequency and inference about population structure ignore this correlation. Recent analytical results show that among populations, correlations can be very high, which could affect estimates of population genetic structure. In this study, we propose a mixture beta model to characterize the allele frequency distribution among populations. This formulation incorporates the correlation among populations as well as extending the model to data with different clusters of populations. Results: Using simulated data, we show that in general, the mixture model provides a good approximation of the among-population allele frequency distribution and a good estimate of correlation among populations. Results from fitting the mixture model to a dataset of genotypes at 377 autosomal microsatellite loci from human populations indicate high correlation among populations, which may not be appropriate to neglect. Traditional measures of population structure tend to over-estimate the amount of genetic differentiation when correlation is neglected. Inference is performed in a Bayesian framework.
Resumo:
Regulatory change not seen since the Great Depression swept the U.S. banking industry beginning in the early 1980s, culminating with the Interstate Banking and Branching Efficiency Act of 1994. Significant consolidations have occurred in the banking industry. This paper considers the market-power versus the efficient-structure theories of the positive correlation between banking concentration and performance on a state-by-state basis. Temporal causality tests imply that bank concentration leads bank profitability, supporting the market-power, rather than the efficient-structure, theory of that positive correlation. Our finding suggests that bank regulators, by focusing on local banking markets, missed the initial stages of an important structural change at the state level.