4 resultados para nitrogen rates

em University of Connecticut - USA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Decomposition rates and N release patterns of turfgrass clippings from lawns are not well understood. Litter bags containing clippings were inserted into the thatch layer of a coolseason turf. The experiment was arranged as a 2 × 4 factorial in a randomized complete block design with three replicates. Treatments included four rates of N fertilizer (0, 98, 196, and 392 kg N ha-1 yr-1) and two clipping treatments (returned vs. removed). Litter bags were removed periodically over the growing season and samples were analyzed for biomass, N and C concentrations, and C:N ratio on an ash-free basis. Percentage N loss from the clippings after 16 weeks ranged from 88% to 93% at the 0 and 392 kg N ha-1 rates, respectively, and from 86% to 94% when clippings were removed (CRM) or returned (CRT), respectively. Percentage C loss from the clippings ranged from 94% to 95% at the 0 and 392 kg N ha-1 rates, respectively, and from 92% to 96% with CRM and CRT, respectively. Cumulative N release was similar across N fertilization rates, (ranging from 131 g N kg-1 to 135 g N kg-1 tissue) but was higher for CRT (151 g N kg-1 tissue) than for CRM (128 g N kg-1 tissue). Grass clippings decomposed rapidly and released N quickly when returned to the turf thatch layer. This indicates the potential for reduced N fertilization when clippings are returned. Such rapid decomposition also suggests that the contribution of grass clippings to thatch development is negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of Kentucky bluegrass (Poa pratensis L.) to potassium (K) fertilization has been inconsistent. The objective of this research was to determine the effects of K fertilization across varying nitrogen (N) rates and clipping management on Kentucky bluegrass clipping yields, quality, tissue K concentrations, apparent N recovery, and N use efficiency. A 2 x 4 x 4 factorial was arranged in a splitplot design and repeated across two years. Main plots were clipping treatments (returned vs. removed) and subplots were N rates (0, 98, 196, and 294 kg ha(-1) yr(-1)) in combination with K rates (0, 81, 162, and 243 kg ha(-1) yr(-1)). There was no positive effect of K on clipping yields and quality even though soil extractable K levels tested low. Higher K rates, however, increased N recovery and use efficiency for all but the highest N rate. Tissue K response to K fertilization was nonlinear. Yield and quality responses were not correlated to tissue K concentration. Nonexchangeable K levels were high in the native soil, and may have provided an additional source of K for bluegrass. The results suggest that extractable K values alone may not adequately predict available K to Kentucky bluegrass in this sandy loam soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of returning grass clippings on turfgrass growth and quality has not been thoroughly examined. The objective of this research was to determine the effects of returning grass clippings in combination with varying N rates on growth, N utilization, and quality of turfgrass managed as a residential lawn. Two field experiments using a cool-season turfgrass mixture were arranged as a 2 x 4 factorial in a randomized complete block design with three replicates. Treatments included two clipping management practices (returned or removed) and four N rates (equivalent to 0, 98, 196, and 392 kg N ha(-1)). Soils at the two sites were a Paxton fine sandy loam (coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts) and a variant of a Hinckley gravelly sandy loam (sandy-skeletal, mixed, mesic Typic Udorthents). Returning clippings was found to increase clipping dry matter yields (DMYs) from 30 to 72%, total N uptake (NUP) from 48 to 60%, N recovery by 62%, and N use efficiency (NUE) from 52 to 71%. Returning grass clippings did not decrease turfgrass quality, and improved it in some plots. We found that N fertilization rates could be reduced 50% or more without decreasing turfgrass quality when clippings were returned. Overall, returning grass clippings was found to improve growth and quality of turfgrass while reducing N fertilization needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue N analysis a tool available for N management of turfgrass. However, peer-reviewed calibration studies to determine optimum tissue N values are lacking. A field experiment with a mixed cool-season species lawn and a greenhouse experiment with Kentucky bluegrass (Poa pratensis L.) were conducted across 2 yr, each with randomized complete block design. Treatments were N application rates between 0 and 587 kg N ha-1 yr-1. In the field experiment, clipping samples were taken monthly from May to September, dried, ground, and analyzed for total N. Clippings samples were collected one to two mowings after plots were fertilized. Linear plateau models comparing relative clipping yield, Commission Internationale de l' Eclairage hue, and CM1000 index to leaf N concentrations were developed. In the greenhouse experiment, clipping samples were taken every 2 wk from May to October and composited across sample dates for leaf N analysis. Color and clipping yields were related to leaf N concentrations using linear plateau models. These models indicated small marginal improvements in growth or color when leaf N exceeded 30 g kg-1, suggesting that a leaf N test can separate turf with optimum leaf N concentrations from turf with below optimum leaf N concentrations. Plateaus in leaf N concentrations with increasing N fertilizer rates suggest, however, that this test may be unable to identify sites with excess available soil N when turf has been mowed before tissue sampling.