2 resultados para newborn mortality
em University of Connecticut - USA
Resumo:
BACKGROUND: There are differences in the literature regarding outcomes of premature small-for-gestational-age (SGA) and appropriate-for gestational-age (AGA) infants, possibly due to failure to take into account gestational age at birth. OBJECTIVE: To compare mortality and respiratory morbidity of SGA and AGA premature newborn infants. DESIGN/METHODS: A retrospective study was done of the 2,487 infants born without congenital anomalies at RESULTS: Controlling for GA, premature SGA infants were at a higher risk for mortality (Odds ratio 3.1, P = 0.001) and at lower risk of respiratory distress syndrome (OR = 0.71, p = 0.02) than AGA infants. However multivariate logistic regression modeling found that the odds of having respiratory distress syndrome (RDS) varied between SGA and AGA infants by GA. There was no change in RDS risk in SGA infants at GA 32 wk (OR = 0.41, 95% CI 0.27 - 0.63; p < 0.01). After controlling for GA, SGA infants were observed to be at a significantly higher risk for developing chronic lung disease as compared to AGA infants (OR = 2.2, 95% CI = 1.2 - 3.9, P = 0.01). There was no significant difference between SGA and AGA infants in total days on ventilator. Among infants who survived, mean length of hospital stay was significantly higher in SGA infants born between 26-36 wks GA than AGA infants. CONCLUSIONS: Premature SGA infants have significantly higher mortality, significantly higher risk of developing chronic lung disease and longer hospital stay as compared to premature AGA infants. Even the reduced risk of RDS in infants born at >/=32 wk GA, (conferred possibly by intra-uterine stress leading to accelerated lung maturation) appears to be of transient effect and is counterbalanced by adverse effects of poor intrauterine growth on long term pulmonary outcomes such as chronic lung disease.
Resumo:
Cattle are the species used most frequently for the development of assisted reproductive technologies, such as nuclear transfer. Cattle cloning can be performed by a large number of laboratories around the world, and the efficiency of nuclear transfer in cattle is the highest among all species in which successful cloning has been achieved. However, an understanding of the expression of imprinted genes in this important species is lacking. In the present study, real time reverse transcription polymerase chain reaction (RT-PCR) was utilized to quantify the expression of the bovine Igf2, Igf2r, and H19 genes in eight major organs (brain, bladder, heart, kidney, liver, lung, spleen, and thymus) of somatic cell cloned calves that died shortly after birth, in three tissues (skin, muscle, and liver) of healthy clones that survived to adulthood, and in corresponding tissues of control animals from natural reproduction. We found that, deceased bovine cloned calves exhibited abnormal expression of all three genes studied in various organs. Large variations in the expression levels of imprinted genes were also seen among these clones, which were produced from the same genetic donor. In surviving adult clones, however, the expression of these imprinted genes was largely normal, except for the expression of the Igf2 gene in muscle, which was highly variable. Our data showed disruptions of expression of imprinted genes in bovine clones, which is possibly due to incomplete reprogramming of donor cell nuclei during nuclear transfer, and these abnormalities may be associated with the high neonatal mortality in cloned animals; clones that survived to adulthood, however, are not only physically healthy but also relatively normal at the molecular level of those three imprinted genes.