2 resultados para dual pathway model

em University of Connecticut - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

miRNAs function to regulate gene expression through post-transcriptional mechanisms to potentially regulate multiple aspects of physiology and development. Whole transcriptome analysis has been conducted on the citron kinase mutant rat, a mutant that shows decreases in brain growth and development. The resulting differences in RNA between mutant and wild-type controls can be used to identify genetic pathways that may be regulated differentially in normal compared to abnormal neurogenesis. The goal of this thesis was to verify, with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), changes in miRNA expression in Cit-k mutants and wild types. In addition to confirming miRNA expression changes, bio-informatics software TargetScan 5.1 was used to identify potential mRNA targets of the differentially expressed miRNAs. The miRNAs that were confirmed to change include: rno-miR-466c, mmu-miR-493, mmu-miR-297a, hsa-miR-765, and hsa-miR-1270. The TargetScan analysis revealed 347 potential targets which have known roles in development. A subset of these potential targets include genes involved in the Wnt signaling pathway which is known to be an important regulator of stem cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition.Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.