3 resultados para data-driven Stochastic Subspace Identification (SSI-data)
em University of Connecticut - USA
Resumo:
This paper extends the existing research on real estate investment trust (REIT) operating efficiencies. We estimate a stochastic-frontier panel-data model specifying a translog cost function, covering 1995 to 2003. The results disagree with previous research in that we find little evidence of scale economies and some evidence of scale diseconomies. Moreover, we also generally find smaller inefficiencies than those shown by other REIT studies. Contrary to previous research, the results also show that self-management of a REIT associates with more inefficiency when we measure output with assets. When we use revenue to measure output, selfmanagement associates with less inefficiency. Also contrary with previous research, higher leverage associates with more efficiency. The results further suggest that inefficiency increases over time in three of our four specifications.
Resumo:
Digital terrain models (DTM) typically contain large numbers of postings, from hundreds of thousands to billions. Many algorithms that run on DTMs require topological knowledge of the postings, such as finding nearest neighbors, finding the posting closest to a chosen location, etc. If the postings are arranged irregu- larly, topological information is costly to compute and to store. This paper offers a practical approach to organizing and searching irregularly-space data sets by presenting a collection of efficient algorithms (O(N),O(lgN)) that compute important topological relationships with only a simple supporting data structure. These relationships include finding the postings within a window, locating the posting nearest a point of interest, finding the neighborhood of postings nearest a point of interest, and ordering the neighborhood counter-clockwise. These algorithms depend only on two sorted arrays of two-element tuples, holding a planimetric coordinate and an integer identification number indicating which posting the coordinate belongs to. There is one array for each planimetric coordinate (eastings and northings). These two arrays cost minimal overhead to create and store but permit the data to remain arranged irregularly.
Resumo:
We present a framework for fitting multiple random walks to animal movement paths consisting of ordered sets of step lengths and turning angles. Each step and turn is assigned to one of a number of random walks, each characteristic of a different behavioral state. Behavioral state assignments may be inferred purely from movement data or may include the habitat type in which the animals are located. Switching between different behavioral states may be modeled explicitly using a state transition matrix estimated directly from data, or switching probabilities may take into account the proximity of animals to landscape features. Model fitting is undertaken within a Bayesian framework using the WinBUGS software. These methods allow for identification of different movement states using several properties of observed paths and lead naturally to the formulation of movement models. Analysis of relocation data from elk released in east-central Ontario, Canada, suggests a biphasic movement behavior: elk are either in an "encamped" state in which step lengths are small and turning angles are high, or in an "exploratory" state, in which daily step lengths are several kilometers and turning angles are small. Animals encamp in open habitat (agricultural fields and opened forest), but the exploratory state is not associated with any particular habitat type.