4 resultados para count data models
em University of Connecticut - USA
Resumo:
At the time when at least two-thirds of the US states have already mandated some form of seller's property condition disclosure statement and there is a movement in this direction nationally, this paper examines the impact of seller's property condition disclosure law on the residential real estate values, the information asymmetry in housing transactions and shift of risk from buyers and brokers to the sellers, and attempts to ascertain the factors that lead to adoption of the disclosur law. The analytical structure employs parametric panel data models, semi-parametric propensity score matching models, and an event study framework using a unique set of economic and institutional attributes for a quarterly panel of 291 US Metropolitan Statistical Areas (MSAs) and 50 US States spanning 21 years from 1984 to 2004. Exploiting the MSA level variation in house prices, the study finds that the average seller may be able to fetch a higher price (about three to four percent) for the house if she furnishes a state-mandated seller's property condition disclosure statement to the buyer.
Resumo:
This paper extends the existing research on real estate investment trust (REIT) operating efficiencies. We estimate stochastic-frontier, panel-data models specifying a translog cost function. The specified model updates the cost frontier with new information as it becomes available over time. The model can identify frontier cost improvements, returns to scale, and cost inefficiencies over time. The results disagree with most previous research in that we find no evidence of scale economies and some evidence of scale diseconomies. Moreover, we also generally find smaller inefficiencies than those shown by other REIT studies. Contrary to previous research, higher leverage associates with more efficiency.
Resumo:
A problem frequently encountered in Data Envelopment Analysis (DEA) is that the total number of inputs and outputs included tend to be too many relative to the sample size. One way to counter this problem is to combine several inputs (or outputs) into (meaningful) aggregate variables reducing thereby the dimension of the input (or output) vector. A direct effect of input aggregation is to reduce the number of constraints. This, in its turn, alters the optimal value of the objective function. In this paper, we show how a statistical test proposed by Banker (1993) may be applied to test the validity of a specific way of aggregating several inputs. An empirical application using data from Indian manufacturing for the year 2002-03 is included as an example of the proposed test.
Resumo:
We present a framework for fitting multiple random walks to animal movement paths consisting of ordered sets of step lengths and turning angles. Each step and turn is assigned to one of a number of random walks, each characteristic of a different behavioral state. Behavioral state assignments may be inferred purely from movement data or may include the habitat type in which the animals are located. Switching between different behavioral states may be modeled explicitly using a state transition matrix estimated directly from data, or switching probabilities may take into account the proximity of animals to landscape features. Model fitting is undertaken within a Bayesian framework using the WinBUGS software. These methods allow for identification of different movement states using several properties of observed paths and lead naturally to the formulation of movement models. Analysis of relocation data from elk released in east-central Ontario, Canada, suggests a biphasic movement behavior: elk are either in an "encamped" state in which step lengths are small and turning angles are high, or in an "exploratory" state, in which daily step lengths are several kilometers and turning angles are small. Animals encamp in open habitat (agricultural fields and opened forest), but the exploratory state is not associated with any particular habitat type.