8 resultados para conditional volatility
em University of Connecticut - USA
Resumo:
This paper empirically assesses whether monetary policy affects real economic activity through its affect on the aggregate supply side of the macroeconomy. Analysts typically argue that monetary policy either does not affect the real economy, the classical dichotomy, or only affects the real economy in the short run through aggregate demand new Keynesian or new classical theories. Real business cycle theorists try to explain the business cycle with supply-side productivity shocks. We provide some preliminary evidence about how monetary policy affects the aggregate supply side of the macroeconomy through its affect on total factor productivity, an important measure of supply-side performance. The results show that monetary policy exerts a positive and statistically significant effect on the supply-side of the macroeconomy. Moreover, the findings buttress the importance of countercyclical monetary policy as well as support the adoption of an optimal money supply rule. Our results also prove consistent with the effective role of monetary policy in the Great Moderation as well as the more recent rise in productivity growth.
Resumo:
This paper revisits the issue of conditional volatility in real GDP growth rates for Canada, Japan, the United Kingdom, and the United States. Previous studies find high persistence in the volatility. This paper shows that this finding largely reflects a nonstationary variance. Output growth in the four countries became noticeably less volatile over the past few decades. In this paper, we employ the modified ICSS algorithm to detect structural change in the unconditional variance of output growth. One structural break exists in each of the four countries. We then use generalized autoregressive conditional heteroskedasticity (GARCH) specifications modeling output growth and its volatility with and without the break in volatility. The evidence shows that the time-varying variance falls sharply in Canada, Japan, and the U.K. and disappears in the U.S., excess kurtosis vanishes in Canada, Japan, and the U.S. and drops substantially in the U.K., once we incorporate the break in the variance equation of output for the four countries. That is, the integrated GARCH (IGARCH) effect proves spurious and the GARCH model demonstrates misspecification, if researchers neglect a nonstationary unconditional variance.
Resumo:
Previous studies (e.g., Hamori, 2000; Ho and Tsui, 2003; Fountas et al., 2004) find high volatility persistence of economic growth rates using generalized autoregressive conditional heteroskedasticity (GARCH) specifications. This paper reexamines the Japanese case, using the same approach and showing that this finding of high volatility persistence reflects the Great Moderation, which features a sharp decline in the variance as well as two falls in the mean of the growth rates identified by Bai and Perronâs (1998, 2003) multiple structural change test. Our empirical results provide new evidence. First, excess kurtosis drops substantially or disappears in the GARCH or exponential GARCH model that corrects for an additive outlier. Second, using the outlier-corrected data, the integrated GARCH effect or high volatility persistence remains in the specification once we introduce intercept-shift dummies into the mean equation. Third, the time-varying variance falls sharply, only when we incorporate the break in the variance equation. Fourth, the ARCH in mean model finds no effects of our more correct measure of output volatility on output growth or of output growth on its volatility.
Resumo:
This study examines the effect of the Great Moderation on the relationship between U.S. output growth and its volatility over the period 1947 to 2006. First, we consider the possible effects of structural change in the volatility process. In so doing, we employ GARCH-M and ARCH-M specifications of the process describing output growth rate and its volatility with and without a one-time structural break in volatility. Second, our data analyses and empirical results suggest no significant relationship between the output growth rate and its volatility, favoring the traditional wisdom of dichotomy in macroeconomics. Moreover, the evidence shows that the time-varying variance falls sharply or even disappears once we incorporate a one-time structural break in the unconditional variance of output starting 1982 or 1984. That is, the integrated GARCH effect proves spurious. Finally, a joint test of a trend change and a one-time shift in the volatility process finds that the one-time shift dominates.
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.
Resumo:
The effects of exchange rate risk have interested researchers, since the collapse of fixed exchange rates. Little consensus exists, however, regarding its effect on exports. Previous studies implicitly assume symmetry. This paper tests the hypothesis of asymmetric effects of exchange rate risk with a dynamic conditional correlation bivariate GARCH(1,1)-M model. The asymmetry means that exchange rate risk (volatility) affects exports differently during appreciations and depreciations of the exchange rate. The data include bilateral exports from eight Asian countries to the US. The empirical results show that real exchange rate risk significantly affects exports for all countries, negative or positive, in periods of depreciation or appreciation. For five of the eight countries, the effects of exchange risk are asymmetric. Thus, policy makers can consider the stability of the exchange rate in addition to its depreciation as a method of stimulating export growth.
Resumo:
The current international integration of financial markets provides a channel for currency depreciation to affect stock prices. Moreover, the recent financial crisis in Asia with its accompanying exchange rate volatility affords a case study to examine that channel. This paper applies a bivariate GARCH-M model of the reduced form of stock market returns to investigate empirically the effects of daily currency depreciation on stock market returns for five newly emerging East Asian stock markets during the Asian financial crisis. The evidence shows that the conditional variances of stock market returns and depreciation rates exhibit time-varying characteristics for all countries. Domestic currency depreciation and its uncertainty adversely affects stock market returns across countries. The significant effects of foreign exchange market events on stock market returns suggest that international fund managers who invest in the newly emerging East Asian stock markets must evaluate the value and stability of the domestic currency as a part of their stock market investment decisions.
Resumo:
This paper explores the dynamic linkages that portray different facets of the joint probability distribution of stock market returns in NAFTA (i.e., Canada, Mexico, and the US). Our examination of interactions of the NAFTA stock markets considers three issues. First, we examine the long-run relationship between the three markets, using cointegration techniques. Second, we evaluate the dynamic relationships between the three markets, using impulse-response analysis. Finally, we explore the volatility transmission process between the three markets, using a variety of multivariate GARCH models. Our results also exhibit significant volatility transmission between the second moments of the NAFTA stock markets, albeit not homogenous. The magnitude and trend of the conditional correlations indicate that in the last few years, the Mexican stock market exhibited a tendency toward increased integration with the US market. Finally, we do note that evidence exists that the Peso and Asian financial crises as well as the stock-market crash in the US affect the return and volatility time-series relationships.