1 resultado para complete spinal cord injury
em University of Connecticut - USA
Resumo:
Although many areas of the brain lose their regenerative capacity with age, stem cell niches have been identified in both the subventricular zone (SVZ) along the lateral walls of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus (Gage, 2000; Alvarez-Buylla et al., 2001; Alvarez-Buylla and Lim, 2004). The SVZ niche utilizes many mechanisms to determine the migration patterns of neuroblasts along the RMS into the olfactory bulb, one being Eph/ephrin signaling (Conover et al., 2000; Holmberg et al., 2005). EphA4-mediated signaling is necessary for axon guidance during development, and its continued expression in the SVZ niche suggests a regulatory role throughout adulthood. Previous studies have suggested that EphA4 plays a role in the regulation of astrocytic gliosis and glial scar formation, which inhibits axonal regeneration in these areas following spinal cord injury (Goldshmit et al., 2004). Blood vessels may also play an important role in SVZ cell proliferation and neuroblast migration following injury (Tavazoie et al., 2008; Yamashita et al., 2006). The goal of this project is to examine glial scar formation as well as the relationship between SVZ vasculature, neuroblasts, and neural stem cells in EphA4 +/+, EphA4 +/-, and EphA4 -/- mice following a needle stick injury in the cortex or striatum. The outcome of these experiments will determine whether invasive procedures such as injections will affect neuroblast migration and/or the organization of the SVZ.