1 resultado para Yield curve data sets
em University of Connecticut - USA
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (37)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (10)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (46)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (65)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (10)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (26)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (338)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (30)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (21)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (5)
- Université de Lausanne, Switzerland (103)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (45)
- University of Southampton, United Kingdom (2)
- University of Washington (4)
Resumo:
Digital terrain models (DTM) typically contain large numbers of postings, from hundreds of thousands to billions. Many algorithms that run on DTMs require topological knowledge of the postings, such as finding nearest neighbors, finding the posting closest to a chosen location, etc. If the postings are arranged irregu- larly, topological information is costly to compute and to store. This paper offers a practical approach to organizing and searching irregularly-space data sets by presenting a collection of efficient algorithms (O(N),O(lgN)) that compute important topological relationships with only a simple supporting data structure. These relationships include finding the postings within a window, locating the posting nearest a point of interest, finding the neighborhood of postings nearest a point of interest, and ordering the neighborhood counter-clockwise. These algorithms depend only on two sorted arrays of two-element tuples, holding a planimetric coordinate and an integer identification number indicating which posting the coordinate belongs to. There is one array for each planimetric coordinate (eastings and northings). These two arrays cost minimal overhead to create and store but permit the data to remain arranged irregularly.