3 resultados para Two-phase experiments
em University of Connecticut - USA
Resumo:
Anion exchange membranes (AEMs) are a potential method for determining the plant available N status of soils; however, their capacity for use with turfgrass has not been researched extensively. The main objective of this experiment was to determine the relationship between soil nitrate desorbed from AEMs and growth response and quality of turfgrass managed as a residential lawn. Two field experiments were conducted with a bluegrass-ryegrass-fescue mixture receiving four rates of N fertilizer (0, 98, 196, and 392 kg N ha(-1) yr(-1)) with clippings returned or removed. The soils at the two sites were a Paxton fine sandy loam (coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts) and a variant of a Hinckley gravelly sandy loam (sandy-skeletal, mixed, mesic Typic Udorthents). Anion exchange membranes were inserted into plots and exchanged weekly during the growing seasons of 1998 and 1999. Nitrate-N was desorbed from AEMs and quantified. As N fertilization rates increased, desorbed NO3-N increased. The relationship of desorbed NO3-N from AEMs to clipping yield and turfgrass quality was characterized using quadratic response plateau (QRP) and Cate-Nelson models (C-Ns). Critical levels of desorbed NO3-N ranged from 0.86 to 8.0 microgram cm(-2) d(-1) for relative dry matter yield (DMY) and from 2.3 to 12 microgram cm(-2) d(-1) for turfgrass quality depending upon experimental treatment. Anion exchange membranes show promise of indicating the critical levels of soil NO3-N desorbed from AEMs necessary to achieve maximum turfgrass quality and yield without overapplication of N.
Resumo:
The effect of returning grass clippings on turfgrass growth and quality has not been thoroughly examined. The objective of this research was to determine the effects of returning grass clippings in combination with varying N rates on growth, N utilization, and quality of turfgrass managed as a residential lawn. Two field experiments using a cool-season turfgrass mixture were arranged as a 2 x 4 factorial in a randomized complete block design with three replicates. Treatments included two clipping management practices (returned or removed) and four N rates (equivalent to 0, 98, 196, and 392 kg N ha(-1)). Soils at the two sites were a Paxton fine sandy loam (coarse-loamy, mixed, active, mesic Oxyaquic Dystrudepts) and a variant of a Hinckley gravelly sandy loam (sandy-skeletal, mixed, mesic Typic Udorthents). Returning clippings was found to increase clipping dry matter yields (DMYs) from 30 to 72%, total N uptake (NUP) from 48 to 60%, N recovery by 62%, and N use efficiency (NUE) from 52 to 71%. Returning grass clippings did not decrease turfgrass quality, and improved it in some plots. We found that N fertilization rates could be reduced 50% or more without decreasing turfgrass quality when clippings were returned. Overall, returning grass clippings was found to improve growth and quality of turfgrass while reducing N fertilization needs.
Resumo:
The intensification of consequential testing situations is associated with an increase in anxiety among American students (Casbarro, 2005). Test anxiety can have negative effects on student test performance (Everson, Millsap, & Rodriguez, 1991). If test anxiety has the potential to decrease students’ test scores, it becomes a factor that can threaten the validity of any inferences drawn between test scores and student progress (Cizek & Burg, 2006). There are several factors that relate closely to test anxiety (Cizek & Burg, 2006). Variables of key influence include gender, socioeconomic status, and teacher-manifested anxiety (Hembree, 1988). Another influence upon test anxiety is students’ participation in academic support programs to prepare them for exit examinations. The purpose of this study was to examine the relationship between 10th grade high school student gender, socioeconomic status, perceived teacher anxiety, and student preparedness with levels of the Massachusetts Comprehensive Assessment System (MCAS) test anxiety. It appears that few studies have examined levels of high school test anxiety in regards to this specific high-stakes MCAS exit exam required for high school graduation. A two-phase sequential mixed-methods research design was used to survey (N=156) 10th grade students represented by a sampling of (n=80) students with low socioeconomic status and (n=76) students with high socioeconomic status regarding their levels of test anxiety in relation to upcoming MCAS testing. A multiple regression analysis was used to measure the relationship between the predictor variables (gender, socioeconomic status, perceived teacher anxiety, and student preparedness) with the criterion variable of student test anxiety using the Test Anxiety Inventory (TAI). Personal interviews with (n=20) volunteer students provided rich explanations of students’ academic self-efficacy, their perceptions of their performance on the upcoming MCAS exam, and their use of strategies to reduce their levels of test anxiety. Personal interviews with (n=12) volunteer school administrators and teachers provided descriptions of their perceptions of how test anxiety affected their students’ performance. A major quantitative finding of this study was that the variables of student socioeconomic status and student ratings of teacher anxiety accounted for the variance in students’ levels of surveyed test anxiety (R2 = .06, p = .033, small to medium effect size). These results indicate that different student populations vary in their readiness skills to successfully participate in consequential testing situations. Consequently, high-test anxious students would require emotional preparation as well as academic preparation when confronting high-stakes testing. The results have the potential to re-shape the format of schools’ MCAS test preparation efforts.