2 resultados para Three Pillar Framework
em University of Connecticut - USA
Resumo:
Previous multicast research often makes commonly accepted but unverifed assumptions on network topologies and group member distribution in simulation studies. In this paper, we propose a framework to systematically evaluate multicast performance for different protocols. We identify a series of metrics, and carry out extensive simulation studies on these metrics with different topological models and group member distributions for three case studies. Our simulation results indicate that realistic topology and group membership models are crucial to accurate multicast performance evaluation. These results can provide guidance for multicast researchers to perform realistic simulations, and facilitate the design and development of multicast protocols.
Resumo:
This paper uses Bayesian vector autoregressive models to examine the usefulness of leading indicators in predicting US home sales. The benchmark Bayesian model includes home sales, the price of homes, the mortgage rate, real personal disposable income, and the unemployment rate. We evaluate the forecasting performance of six alternative leading indicators by adding each, in turn, to the benchmark model. Out-of-sample forecast performance over three periods shows that the model that includes building permits authorized consistently produces the most accurate forecasts. Thus, the intention to build in the future provides good information with which to predict home sales. Another finding suggests that leading indicators with longer leads outperform the short-leading indicators.