3 resultados para Soil sciences|Civil engineering|Environmental science|Environmental engineering

em University of Connecticut - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparing published NAVD 88 Helmert orthometric heights of First-Order bench marks against GPS-determined orthometric heights showed that GEOID03 and GEOID09 perform at their reported accuracy in Connecticut. GPS-determined orthometric heights were determined by subtracting geoid undulations from ellipsoid heights obtained from a network least-squares adjustment of GPS occupations in 2007 and 2008. A total of 73 markers were occupied in these stability classes: 25 class A, 11 class B, 12 class C, 2 class D bench marks, and 23 temporary marks with transferred elevations. Adjusted ellipsoid heights were compared against OPUS as a check. We found that: the GPS-determined orthometric heights of stability class A markers and the transfers are statistically lower than their published values but just barely; stability class B, C and D markers are also statistically lower in a manner consistent with subsidence or settling; GEOID09 does not exhibit a statistically significant residual trend across Connecticut; and GEOID09 out-performed GEOID03. A "correction surface" is not recommended in spite of the geoid models being statistically different than the NAVD 88 heights because the uncertainties involved dominate the discrepancies. Instead, it is recommended that the vertical control network be re-observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The State of Connecticut owns a LIght Detection and Ranging (LIDAR) data set that was collected in 2000 as part of the State’s periodic aerial reconnaissance missions. Although collected eight years ago, these data are just now becoming ready to be made available to the public. These data constitute a massive “point cloud”, being a long list of east-north-up triplets in the State Plane Coordinate System Zone 0600 (SPCS83 0600), orthometric heights (NAVD 88) in US Survey feet. Unfortunately, point clouds have no structure or organization, and consequently they are not as useful as Triangulated Irregular Networks (TINs), digital elevation models (DEMs), contour maps, slope and aspect layers, curvature layers, among others. The goal of this project was to provide the computational infrastructure to create a first cut of these products and to serve them to the public via the World Wide Web. The products are available at http://clear.uconn.edu/data/ct_lidar/index.htm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the movement to turn political science into a real science, various mathematical methods that are now the staples of physics, biology, and even economics are thoroughly uncommon in political science, especially the study of civil war. This study seeks to apply such methods - specifically, ordinary differential equations (ODEs) - to model civil war based on what one might dub the capabilities school of thought, which roughly states that civil wars end only when one side’s ability to make war falls far enough to make peace truly attractive. I construct several different ODE-based models and then test them all to see which best predicts the instantaneous capabilities of both sides of the Sri Lankan civil war in the period from 1990 to 1994 given parameters and initial conditions. The model that the tests declare most accurate gives very accurate predictions of state military capabilities and reasonable short term predictions of cumulative deaths. Analysis of the model reveals the scale of the importance of rebel finances to the sustainability of insurgency, most notably that the number of troops required to put down the Tamil Tigers is reduced by nearly a full order of magnitude when Tiger foreign funding is stopped. The study thus demonstrates that accurate foresight may come of relatively simple dynamical models, and implies the great potential of advanced and currently unconventional non-statistical mathematical methods in political science.