2 resultados para Second molar Permanent dentition

em University of Connecticut - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthodontic tooth movement requires external orthodontic forces to be converted to cellular signals that result in the coordinated removal of bone on one side of the tooth (compression side) by osteoclasts, and the formation of new bone by osteoblasts on the other side (tension side). The length of orthodontic treatment can take several years, leading to problems of caries, periodontal disease, root resorption, and patient dissatisfaction. It appears that the velocity of tooth movement is largely dependent on the rate of alveolar bone remodeling. Pharmacological approaches to increase the rate of tooth movement are limited due to patient discomfort, severe root resorption, and drug-induced side effects. Recently, externally applied, cyclical, low magnitude forces (CLMF) have been shown to cause an increase in the bone mineral density of long bones, and in the growth of craniofacial structures in a variety of animal models. In addition, CLMF is well tolerated by the patient and produces no known adverse effects. However, its application in orthodontic tooth movement has not been specifically determined. Since factors that increase alveolar bone remodeling enhance the rate of orthodontic tooth movement, we hypothesized that externally applied, cyclical, low magnitude forces (CLMF) will increase the rate of orthodontic tooth movement. In order to test this hypothesis we used an in vivo rat orthodontic tooth movement model. Our specific aims were: Specific Aim 1: To develop an in vivo rat model for tooth movement. We developed a tooth movement model based upon two established rodent models (Ren and Yoshimatsu et al, See Figure 1.). The amount of variation of tooth movement in rats exposed to 25-60 g of mesial force activated viii from the first molar to the incisor for 4 weeks was calculated. Specific Aim 2: To determine the frequency dose response of externally applied, cyclical, low magnitude forces (CLMF) for maximal tooth movement and osteoclast numbers. Our working hypothesis for this aim was that the amount of tooth movement would be dose dependent on the frequency of application of the CLMF. In order to test this working hypothesis, we varied the frequency of the CLMF from 30, 60, 100, and 200 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks, and measured the amount of tooth movement. We also looked at the number of osteoclasts for the different frequencies; we hypothesized an increase in osteoclasts for the dose respnse of different frequencies. Specific Aim 3: To determine the effects of externally applied, cyclical, low magnitude forces (CLMF) on PDL proliferation. Our working hypothesis for this aim was that PDL proliferation would increase with CLMF. In order to test this hypothesis we compared CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) performed on the left side (experimental side), to the non-CLMF side, on the right (control side). This was an experimental study with 24 rats in total. The experimental group contained fifteen (15) rats in total, and they all received a spring plus a different frequency of CLMF. Three (3) received a spring and CLMF at 30 Hz, 0.4N for 10 minutes. Six (6) received a spring and CLMF at 60 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 100 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 200 Hz, 0.4N for 10 minutes. The control group contained six (6) rats, and received only a spring. An additional ix three (3) rats received CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) only, with no spring, and were used only for histological purposes. Rats were subjected to the application of orthodontic force from their maxillary left first molar to their left central incisor. In addition some of the rats received externally applied, cyclical, low magnitude force (CLMF) on their maxillary left first molar. micro-CT was used to measure the amount of orthodontic tooth movement. The distance between the maxillary first and second molars, at the most mesial point of the second molar and the most distal point of the first molar (1M-2M distance) were used to evaluate the distance of tooth movement. Immunohistochemistry was performed with TRAP staining and BrdU quantification. Externally applied, cyclical, low magnitude forces (CLMF) do appear to have an effect on the rate, while not significant, of orthodontic tooth movement in rats. It appears that lower CLMF decreases the rate of tooth movement, while higher CLMF increases the rate of tooth movement. Future studies with larger sample sizes are needed to clarify this issue. CLMF does not appear to affect the proliferation in PDL cells, and has no effect on the number of osteoclasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this retrospective study is to follow up on a previous Dynamic Smile Analysis and videographically analyze and develop averages for soft tissue norms with respect to the display of dentition during speech. These values would then be compared cross-sectionally across different age groups to see whether changes attributable to the aging process could be seen. A secondary objective was to compare averages for soft tissue norms in the display of dentition during speech to averages for soft tissue norms in the display of dentition during the smile. Materials and Method: Records from a previous study in which video equipment was used to capture video for 26 1 subjects were re-evaluated to find appropriate frames to analyze for speech. Two frames for each subject were selected; one frame representing the maximal display of maxillary incisors during speech and the second representing the widest transverse display of dentition during speech. After excluding 40 subjects the data for the remaining 221 subjects was analyzed. These averages were then compared to averages attained in the previous study to compare the display of the dentition during speech to the display of the dentition during smile. Results: On average, a difference in 1.29 mm was seen in the display of the maxillary incisors during speech at maximal display and during the smile. An average of 7.23 mm of maxillary incisors is readily visible during maximum display of maxillary incisors during speech, as compared to 8.52 mm during the smile. The constructed smile index was also smaller when measured during the speech when compared to the smile index by an average of 2.58 units. Conclusion: This study helps to establish age-related dynamic norms for the display of dentition during speech. The dynamic measures indicate that the display of dectition is greater, on average, during the smile than at speech.