2 resultados para Research networks

em University of Connecticut - USA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of sensor network research deals with land-based networks, which are essentially two-dimensional, and thus the majority of simulation and animation tools also only handle such networks. Underwater sensor networks on the other hand, are essentially 3D networks because the depth at which a sensor node is located needs to be considered as well. Due to that additional dimension, specialized tools need to be used when conducting simulations for experimentation. The School of Engineering’s Underwater Sensor Network (UWSN) lab is conducting research on underwater sensor networks and requires simulation tools for 3D networks. The lab has extended NS-2, a widely used network simulator, so that it can simulate three-dimensional networks. However, NAM, a widely used network animator, currently only supports two-dimensional networks and no extensions have been implemented to give it three-dimensional capabilities. In this project, we develop a network visualization tool that functions similarly to NAM but is able to render network environments in full 3-D. It is able to take as input a NS-2 trace file (the same file taken as input by NAM), create the environment, position the sensor nodes, and animate the events of the simulation. Further, the visualization tool is easy to use, especially friendly to NAM users, as it is designed to follow the interfaces and functions similar to NAM. So far, the development has fulfilled the basic functionality. Future work includes fully functional capabilities for visualization and much improved user interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a novel dataset and research design to empirically detect the effect of social interactions among neighbors on labor market outcomes. Specifically, using Census data that characterize residential and employment locations down to the city block, we examine whether individuals residing in the same block are more likely to work together than individuals in nearby but not identical blocks. We find significant evidence of social interactions operating at the block level: residing on the same versus nearby blocks increases the probability of working together by over 33 percent. The results also indicate that this referral effect is stronger when individuals are similar in sociodemographic characteristics (e.g., both have children of similar ages) and when at least one individual is well attached to the labor market. These findings are robust across various specifications intended to address concerns related to sorting and reverse causation. Further, having determined the characteristics of a pair of individuals that lead to an especially strong referral effect, we provide evidence that the increased availability of neighborhood referrals has a significant impact on a wide range of labor market outcomes including employment and wages.