2 resultados para Receptors, Leptin

em University of Connecticut - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal cochlear nucleus (DCN) receives auditory information via the auditory nerve coming from the cochlea. It is responsible for much of the integration of auditory information, and it projects this auditory information to higher auditory brain centers for further processing. This study focuses on the DCN of adult Rhesus monkeys to characterize two specific cell types, the fusiform and cartwheel cell, based on morphometric parameters and type of glutamate receptor they express. The fusiform cell is the main projection neuron, while the cartwheel cell is the main inhibitory interneuron. Expression of AMPA glutamate receptor subunits is localized to certain cell types. The activity of the CN depends on the AMPA receptor subunit composition and expression. Immunocytochemistry, using specific antibodies for AMPA glutamate receptor subunits GluR1, GluR2/3 and GluR4, was used in conjunction with morphometry to determine the location, morphological characteristics and expression of AMPA receptor subunits in fusiform and cartwheel cells in the primate DCN. Qualitative as well as quantitative data indicates that there are important morphological differences in cell location and expression of AMPA glutamate receptor subunits between the rodent DCN and that of primates. GluR2/3 is widely expressed in the primate DCN. GluR1 is also widely expressed in the primate DCN. GluR4 is diffusely expressed. Expression of GluR2/3 and GluR4 in the primate is similar to that of the rodent. However, expression of GluR1 is different. GluR1 is only expressed by cartwheel cells in the rodent DCN, but is expressed by a variety of cells, including fusiform cells, in the DCN of the primate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has been cited as the second leading preventable cause of death in the United States. Studies have determined that at risk overweight and obese individuals have high circulating levels of leptin indicative of leptin resistance as well as elevated levels of plasma triglycerides. Postulates have been formed that link elevated levels of triglycerides with the inhibition of leptin across the blood-brain barrier. If a method of lowering triglycerides is achieved, leptin should be able to cross the blood-brain barrier and reach the ypothalamus, thus regulating body weight through a decrease in appetite and increase in energy expenditure. The primary aim of this study was to compare the effects of both carbohydrate and fat restricted diets on plasma triglycerides and leptin concentrations in overweight and obese subjects with hypertriglyceridemia. Forty subjects were randomly assigned to either the low carbohydrate or low fat diet group for a 12 wk period. Plasma triglyceride and leptin concentrations in the blood were analyzed before and after the 12 wk period to assess diet-induced changes. Both groups had a significant reduction in body weight, though the effect was much greater in the carbohydrate restricted diet group. Fasting and postprandial plasma triglycerides also decreased to a greater extent in the low carbohydrate diet group. Similarly, leptin levels decreased to a greater extent in the carbohydrate restricted diet group. The changes in leptin levels were directly related to the changes in both fasting and postprandial triglyceride levels. The results from this study provide preliminary evidence of diet-induced triglyceride reductions as an underlying mechanism in lowering plasma leptin and improving leptin sensitivity. Further, they provide evidence that an increase in triglyceride levels is at least partially responsible for leptin resistance and reduced leptin sensitivity in obese hypertriglyceridemic individuals. This novel discovery is important as it raises the possibility that other methods of lowering triglycerides may improve the efficiency of leptin transport and ultimately improve fat metabolism in overweight and obese individuals.