3 resultados para Power market
em University of Connecticut - USA
Resumo:
Regulatory change not seen since the Great Depression swept the U.S. banking industry beginning in the early 1980s, culminating with the Interstate Banking and Branching Efficiency Act of 1994. Significant consolidations have occurred in the banking industry. This paper considers the market-power versus the efficient-structure theories of the positive correlation between banking concentration and performance on a state-by-state basis. Temporal causality tests imply that bank concentration leads bank profitability, supporting the market-power, rather than the efficient-structure, theory of that positive correlation. Our finding suggests that bank regulators, by focusing on local banking markets, missed the initial stages of an important structural change at the state level.
Resumo:
We examine the time-series relationship between housing prices in eight Southern California metropolitan statistical areas (MSAs). First, we perform cointegration tests of the housing price indexes for the MSAs, finding seven cointegrating vectors. Thus, the evidence suggests that one common trend links the housing prices in these eight MSAs, a purchasing power parity finding for the housing prices in Southern California. Second, we perform temporal Granger causality tests revealing intertwined temporal relationships. The Santa Anna MSA leads the pack in temporally causing housing prices in six of the other seven MSAs, excluding only the San Luis Obispo MSA. The Oxnard MSA experienced the largest number of temporal effects from other MSAs, six of the seven, excluding only Los Angeles. The Santa Barbara MSA proved the most isolated in that it temporally caused housing prices in only two other MSAs (Los Angels and Oxnard) and housing prices in the Santa Anna MSA temporally caused prices in Santa Barbara. Third, we calculate out-of-sample forecasts in each MSA, using various vector autoregressive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different MSAs. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.