1 resultado para Power Distribution
em University of Connecticut - USA
Filtro por publicador
- Aberdeen University (4)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (41)
- Biblioteca de Teses e Dissertações da USP (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (208)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Brock University, Canada (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (21)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (27)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (10)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (29)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Viseu (4)
- Instituto Politécnico do Porto, Portugal (48)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (3)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (212)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Scielo Saúde Pública - SP (6)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (20)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (15)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (11)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (21)
- University of Queensland eSpace - Australia (120)
- University of Washington (1)
Resumo:
This paper proposes asymptotically optimal tests for unstable parameter process under the feasible circumstance that the researcher has little information about the unstable parameter process and the error distribution, and suggests conditions under which the knowledge of those processes does not provide asymptotic power gains. I first derive a test under known error distribution, which is asymptotically equivalent to LR tests for correctly identified unstable parameter processes under suitable conditions. The conditions are weak enough to cover a wide range of unstable processes such as various types of structural breaks and time varying parameter processes. The test is then extended to semiparametric models in which the underlying distribution in unknown but treated as unknown infinite dimensional nuisance parameter. The semiparametric test is adaptive in the sense that its asymptotic power function is equivalent to the power envelope under known error distribution.