3 resultados para PROTEIN-C INHIBITOR
em University of Connecticut - USA
Resumo:
BACKGROUND: Microsomal transfer protein inhibitors (MTPi) have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG). However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. METHODS: Male guinea pigs (n = 10 per group) were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control), 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. RESULTS: Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P < 0.05). Atorvastatin had the most pronounced hypolipidemic effects with a 35% reduction in LDL cholesterol and 40% reduction in TG. JTT-130 did not induce hepatic lipid accumulation compared to controls. Cholesteryl ester transfer protein (CETP) activity was reduced in a dose dependent manner by increasing doses of MTPi and guinea pigs treated with atorvastatin had the lowest CETP activity (P < 0.01). In addition the number of molecules of cholesteryl ester in LDL and LDL diameter were lower in guinea pigs treated with atorvastatin. In contrast, hepatic enzymes involved in maintaining cholesterol homeostasis were not affected by drug treatment. CONCLUSION: These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.
Resumo:
Raf Kinase Inhibitor Protein (RKIP) has been identified as a phosphatidylethanolamine-binding protein capable of inhibiting Raf-1 kinase, an enzyme significant in cell proliferation and cancer development. When properly functioning, RKIP can mediate the expression of Raf-1 kinase and help prevent uncontrolled cell division. RKIP also has suggested, but unclear, roles in spindle fiber formation during mitosis, regulation of apoptosis, and cell motility. The Fenteany laboratory in the Chemistry Department identified a new small molecule, named Locostatin, as a cell migration inhibitor in mammalian cells, with RKIP as its primary molecular target. Dictyostelium discoideum possess two RKIP proteins, RKIP-A and RKIP-B. In order to begin to study the function of RKIP in D. discoideum and its role in cell motility, I created a mutant cell line which lacks a functional RKIP-A gene. In this paper, we show that removal of RKIP-A does not affect vegetative motility, but impairs chemotaxis and development in the presence of drug. Interestingly, RKIP-A knockout mutants appear more resistant to drug effects on vegetative motility than wild-type cells. More research is needed to reconcile these seemingly contrasting results, and to better develop a model for RKIP-A’s role in cell motility.