4 resultados para OVERACTIVE BLADDER

em University of Connecticut - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detrusor underactivity (DU) increases susceptibility to urinary retention and accordingly further complicates the management of urinary incontinence. Bladder muscle stretch, a lack of estrogen, and aging are 3 notable DU risk factors. The aim of this research is to better characterize the changes in cellular composition of the bladder that result from these 3 risk factors to gain a better understanding of DU pathogenesis and pathobiology. This research focuses on the effects of a lack of estrogen while also providing an outline for determining the effects of bladder muscle stretch and aging on the cellular composition of the bladder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cattle are the species used most frequently for the development of assisted reproductive technologies, such as nuclear transfer. Cattle cloning can be performed by a large number of laboratories around the world, and the efficiency of nuclear transfer in cattle is the highest among all species in which successful cloning has been achieved. However, an understanding of the expression of imprinted genes in this important species is lacking. In the present study, real time reverse transcription polymerase chain reaction (RT-PCR) was utilized to quantify the expression of the bovine Igf2, Igf2r, and H19 genes in eight major organs (brain, bladder, heart, kidney, liver, lung, spleen, and thymus) of somatic cell cloned calves that died shortly after birth, in three tissues (skin, muscle, and liver) of healthy clones that survived to adulthood, and in corresponding tissues of control animals from natural reproduction. We found that, deceased bovine cloned calves exhibited abnormal expression of all three genes studied in various organs. Large variations in the expression levels of imprinted genes were also seen among these clones, which were produced from the same genetic donor. In surviving adult clones, however, the expression of these imprinted genes was largely normal, except for the expression of the Igf2 gene in muscle, which was highly variable. Our data showed disruptions of expression of imprinted genes in bovine clones, which is possibly due to incomplete reprogramming of donor cell nuclei during nuclear transfer, and these abnormalities may be associated with the high neonatal mortality in cloned animals; clones that survived to adulthood, however, are not only physically healthy but also relatively normal at the molecular level of those three imprinted genes.