2 resultados para Membrane of cellulose

em University of Connecticut - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of tight urinary epithelia, as exemplified by the turtle bladder, acidify the luminal solution by active transport of H+ across the luminal cell membrane. The rate of active H+ transport (JH) decreases as the electrochemical potential difference for H+ [delta mu H = mu H(lumen) - mu H(serosa)] across the epithelium is increased. The luminal cell membrane has a low permeability for H+ equivalents and a high electrical resistance compared with the basolateral cell membrane. Changes in JH thus reflect changes in active H+ transport across the luminal membrane. To examine the control of JH by delta mu H in the turtle bladder, transepithelial electrical potential differences (delta psi) were imposed at constant acid-base conditions or the luminal pH was varied at delta psi = 0 and constant serosal PCO2 and pH. When the luminal compartment was acidified from pH 7 to 4 or was made electrically positive, JH decreased as a linear function of delta mu H as previously described. When the luminal compartment was made alkaline from pH 7 to 9 or was made electrically negative, JH reached a maximal value, which was the same whether the delta mu H was imposed as a delta pH or a delta psi. The nonlinear JH vs. delta mu H relation does not result from changes in the number of pumps in the luminal membrane or from changes in the intracellular pH, but is a characteristic of the H+ pumps themselves. We propose a general scheme, which, because of its structural features, can account for the nonlinearity of the JH vs. delta mu H relations and, more specifically, for the kinetic equivalence of the effects of the chemical and electrical components of delta mu H. According to this model, the pump complex consists of two components: a catalytic unit at the cytoplasmic side of the luminal membrane, which mediates the ATP-driven H+ translocation, and a transmembrane channel, which mediates the transfer of H+ from the catalytic unit to the luminal solution. These two components may be linked through a buffer compartment for H+ (an antechamber).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metallothionein (MT) represents a family of low molecular weight, cysteine-rich proteins that play a number of roles in cellular homeostasis. MT is synthesized as a consequence of a variety of cellular stressors, including exposure to toxic metals, increased temperature, tissue wounding, as well as inflammatory and tumorigenic agents. This protein has been found in both intracellular compartments and extracellular spaces, and its function may depend in part on its location. Extracellular MT is able to redistribute heavy metals between tissues, act as a powerful antioxidant, affect cell proliferation, and cause the suppression of T-dependent humoral immunity. The nature of the interaction of MT with the plasma cell membrane has yet to be characterized, despite many observations that there is a significant pool of extracellular MT, and that this extracellular MT will bind to leukocyte plasma membranes. In light of studies that MT can be detected on the surface of leukocytes from animals immunized in the presence of adjuvant, and that an MT specific receptor has been found on the surface of astrocytes, we have investigated the nature of the potential MT-specific surface receptor-binding site(s) on the plasma membrane of leukocytes. The identification of MT-receptors will allow for the characterization of the mechanism MT uses for immunomodulation, for the manipulation of MT in its immunomodulatory role, and for the identification of patients at higher risk for those potentially harmful immunomodulatory effects.