4 resultados para MSA

em University of Connecticut - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Researchers have long recognized that the non-random sorting of individuals into groups generates correlation between individual and group attributes that is likely to bias naive estimates of both individual and group effects. This paper proposes a non-parametric strategy for identifying these effects in a model that allows for both individual and group unobservables, applying this strategy to the estimation of neighborhood effects on labor market outcomes. The first part of this strategy is guided by a robust feature of the equilibrium in the canonical vertical sorting model of Epple and Platt (1998), that there is a monotonic relationship between neighborhood housing prices and neighborhood quality. This implies that under certain conditions a non- parametric function of neighborhood housing prices serves as a suitable control function for the neighborhood unobservable in the labor market outcome regression. The second part of the proposed strategy uses aggregation to develop suitable instruments for both exogenous and endogenous group attributes. Instrumenting for each individual's observed neighborhood attributes with the average neighborhood attributes of a set of observationally identical individuals eliminates the portion of the variation in neighborhood attributes due to sorting on unobserved individual attributes. The neighborhood effects application is based on confidential microdata from the 1990 Decennial Census for the Boston MSA. The results imply that the direct effects of geographic proximity to jobs, neighborhood poverty rates, and average neighborhood education are substantially larger than the conditional correlations identified using OLS, although the net effect of neighborhood quality on labor market outcomes remains small. These findings are robust across a wide variety of specifications and robustness checks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the time-series relationship between housing prices in eight Southern California metropolitan statistical areas (MSAs). First, we perform cointegration tests of the housing price indexes for the MSAs, finding seven cointegrating vectors. Thus, the evidence suggests that one common trend links the housing prices in these eight MSAs, a purchasing power parity finding for the housing prices in Southern California. Second, we perform temporal Granger causality tests revealing intertwined temporal relationships. The Santa Anna MSA leads the pack in temporally causing housing prices in six of the other seven MSAs, excluding only the San Luis Obispo MSA. The Oxnard MSA experienced the largest number of temporal effects from other MSAs, six of the seven, excluding only Los Angeles. The Santa Barbara MSA proved the most isolated in that it temporally caused housing prices in only two other MSAs (Los Angels and Oxnard) and housing prices in the Santa Anna MSA temporally caused prices in Santa Barbara. Third, we calculate out-of-sample forecasts in each MSA, using various vector autoregressive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different MSAs. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the time when at least two-thirds of the US states have already mandated some form of seller's property condition disclosure statement and there is a movement in this direction nationally, this paper examines the impact of seller's property condition disclosure law on the residential real estate values, the information asymmetry in housing transactions and shift of risk from buyers and brokers to the sellers, and attempts to ascertain the factors that lead to adoption of the disclosur law. The analytical structure employs parametric panel data models, semi-parametric propensity score matching models, and an event study framework using a unique set of economic and institutional attributes for a quarterly panel of 291 US Metropolitan Statistical Areas (MSAs) and 50 US States spanning 21 years from 1984 to 2004. Exploiting the MSA level variation in house prices, the study finds that the average seller may be able to fetch a higher price (about three to four percent) for the house if she furnishes a state-mandated seller's property condition disclosure statement to the buyer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the impact of seller's Property Condition Disclosure Law on the residential real estate values. A disclosure law may address the information asymmetry in housing transactions shifting of risk from buyers and brokers to the sellers and raising housing prices as a result. We combine propensity score techniques from the treatment effects literature with a traditional event study approach. We assemble a unique set of economic and institutional attributes for a quarterly panel of 291 US Metropolitan Statistical Areas (MSAs) and 50 US States spanning 21 years from 1984 to 2004 is used to exploit the MSA level variation in house prices. The study finds that the average seller may be able to fetch a higher price (about three to four percent) for the house if she furnishes a state-mandated seller.s property condition disclosure statement to the buyer. When we compare the results from parametric and semi-parametric event analyses, we find that the semi-parametric or the propensity score analysis generals moderately larger estimated effects of the law on housing prices.