3 resultados para MCMC algorithm

em University of Connecticut - USA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamonds are known for both their beauty and their durability. Jefferson National Lab in Newport News, VA has found a way to utilize the diamond's strength to view the beauty of the inside of the atomic nucleus with the hopes of finding exotic forms of matter. By firing very fast electrons at a diamond sheet no thicker than a human hair, high energy particles of light known as photons are produced with a high degree of polarization that can illuminate the constituents of the nucleus known as quarks. The University of Connecticut Nuclear Physics group has responsibility for crafting these extremely thin, high quality diamond wafers. These wafers must be cut from larger stones that are about the size of a human finger, and then carefully machined down to the final thickness. The thinning of these diamonds is extremely challenging, as the diamond's greatest strength also becomes its greatest weakness. The Connecticut Nuclear Physics group has developed a novel technique to assist industrial partners in assessing the quality of the final machining steps, using a technique based on laser interferometry. The images of the diamond surface produced by the interferometer encode the thickness and shape of the diamond surface in a complex way that requires detailed analysis to extract. We have developed a novel software application to analyze these images based on the method of simulated annealing. Being able to image the surface of these diamonds without requiring costly X-ray diffraction measurements allows rapid feedback to the industrial partners as they refine their thinning techniques. Thus, by utilizing a material found to be beautiful by many, the beauty of nature can be brought more clearly into view.