5 resultados para Long memory stochastic process
em University of Connecticut - USA
Resumo:
This paper examines the mean-reverting property of real exchange rates. Earlier studies have generally not been able to reject the null hypothesis of a unit-root in real exchange rates, especially for the post-Bretton Woods floating period. The results imply that long-run purchasing power parity does not hold. More recent studies, especially those using panel unit-root tests, have found more favorable results, however. But, Karlsson and Löthgren (2000) and others have recently pointed out several potential pitfalls of panel unit-root tests. Thus, the panel unit-root test results are suggestive, but they are far from conclusive. Moreover, consistent individual country time series evidence that supports long-run purchasing power parity continues to be scarce. In this paper, we test for long memory using Lo's (1991) modified rescaled range test, and the rescaled variance test of Giraitis, Kokoszka, Leipus, and Teyssière (2003). Our testing procedure provides a non-parametric alternative to the parametric tests commonly used in this literature. Our data set consists of monthly observations from April 1973 to April 2001 of the G-7 countries in the OECD. Our two tests find conflicting results when we use U.S. dollar real exchange rates. However, when non-U.S. dollar real exchange rates are used, we find only two cases out of fifteen where the null hypothesis of an unit-root with short-term dependence can be rejected in favor of the alternative hypothesis of long-term dependence using the modified rescaled range test, and only one case when using the rescaled variance test. Our results therefore provide a contrast to the recent favorable panel unit-root test results.
Resumo:
Standard macroeconomic models that assume an exogenous stochastic process for multifactor productivity offer the interpretation that recessions are the result of ''bad news'' (technological regress) and expansions are the result of ''good news'' (technological advancement). The view taken here is that both expansions and recessions are the result of ''good news'' in the sense that in both cases, aggregate production possibilities have increased. Recessions can be thought of as the transition from one technological frontier to the next.
Resumo:
While many tend to think of memory systems in the brain as a single process, in reality several experiments have supported multiple dissociations of different forms of learning, such as spatial learning and response learning. In both humans and rats, the hippocampus has long been shown to be specialized in the storage of spatial and contextual memory whereas the striatum is associated with motor responses and habitual behaviors. Previous studies have examined how damage to hippocampus or striatum has affected the acquisition of either a spatial or response navigation task. However even in a very familiar environment organisms must continuously switch between place and response strategies depending upon circumstances. The current research investigates how these two brain systems interact under normal conditions to produce navigational behavior. Rats were tested using a task developed by Jacobson and colleagues (2006) in which the two types of navigation could be controlled and studied simultaneously. Rats were trained to solve a plus maze using both a spatial and a response strategy. A cue (flashing light) was employed to indicate the correct strategy on a given trial. When no light was present, the animals were rewarded for making a 90º right turn (motor response). When the light was on, the animals were rewarded for going to a specific goal location (place strategy). After learning the task, animals had a sham surgery or dorsal striatum or hippocampus damaged. In order to investigate the individual role of each brain system and evaluate whether these brain regions compete or cooperate for control over strategy, we utilized a within-animal comparisons. The configuration of the maze allowed for the comparison of behavior in individual animals before and after specific brain areas were damaged. Animals with hippocampal lesions showed selective deficits on place trials after surgery and learned the reversal of the motor response more rapidly than striatal lesioned or sham rats. Unlike previous findings regarding maze learning, animals with striatal lesions showed deficits in both place and response trials and had difficulty learning the reversal of motor response. Therefore, the effects of lesions on the ability to switch back and forth between strategies were more complex than previously suggested. This work may reveal important new insight on the integration of hippocampal and striatal learning systems, and facilitate a better understanding of the brain dynamics underlying similar navigational processes in humans.
Resumo:
This paper outlines a process for teaching long-run neutrality of money, drawing an analogy between equity markets and the money market. The key points in the discussion include the following: (1) What is the price of money? (2) Why does the long-run demand for money trace out a rectangular hyperbola? (3) Why does the slow adjustment of goods and service prices to changes in the stock of money lead to a different short-run demand for money? and (4) Why does a successful currency reform generate similar short-run movements in the price of money as movements in equity share prices after a change in the supply of shares? I have used this approach successfully for over 30 years at all levels, wherever I need to discuss the money market in a macroeconomic model.
Resumo:
In this paper we introduce technical efficiency via the intercept that evolve over time as a AR(1) process in a stochastic frontier (SF) framework in a panel data framework. Following are the distinguishing features of the model. First, the model is dynamic in nature. Second, it can separate technical inefficiency from fixed firm-specific effects which are not part of inefficiency. Third, the model allows one to estimate technical change separate from change in technical efficiency. We propose the ML method to estimate the parameters of the model. Finally, we derive expressions to calculate/predict technical inefficiency (efficiency).