2 resultados para Logic and Probabilistic Models

em University of Connecticut - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dua and Miller (1996) created leading and coincident employment indexes for the state of Connecticut, following Moore's (1981) work at the national level. The performance of the Dua-Miller indexes following the recession of the early 1990s fell short of expectations. This paper performs two tasks. First, it describes the process of revising the Connecticut Coincident and Leading Employment Indexes. Second, it analyzes the statistical properties and performance of the new indexes by comparing the lead profiles of the new and old indexes as well as their out-of-sample forecasting performance, using the Bayesian Vector Autoregressive (BVAR) method. The new indexes show improved performance in dating employment cycle chronologies. The lead profile test demonstrates that superiority in a rigorous, non-parametric statistic fashion. The mixed evidence on the BVAR forecasting experiments illustrates the truth in the Granger and Newbold (1986) caution that leading indexes properly predict cycle turning points and do not necessarily provide accurate forecasts except at turning points, a view that our results support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper revisits the issue of conditional volatility in real GDP growth rates for Canada, Japan, the United Kingdom, and the United States. Previous studies find high persistence in the volatility. This paper shows that this finding largely reflects a nonstationary variance. Output growth in the four countries became noticeably less volatile over the past few decades. In this paper, we employ the modified ICSS algorithm to detect structural change in the unconditional variance of output growth. One structural break exists in each of the four countries. We then use generalized autoregressive conditional heteroskedasticity (GARCH) specifications modeling output growth and its volatility with and without the break in volatility. The evidence shows that the time-varying variance falls sharply in Canada, Japan, and the U.K. and disappears in the U.S., excess kurtosis vanishes in Canada, Japan, and the U.S. and drops substantially in the U.K., once we incorporate the break in the variance equation of output for the four countries. That is, the integrated GARCH (IGARCH) effect proves spurious and the GARCH model demonstrates misspecification, if researchers neglect a nonstationary unconditional variance.