3 resultados para Lock holder preemption

em University of Connecticut - USA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An adjustable art table was designed for the artists at Passion Works Studio to fulfill a need for a wheelchair-friendly art table. The client desired that the table be sturdy, not electronic and can be used by multiple users. In response, a mechanical approach was taken and various raising devices were explored. A mechanical height adjustment would make for a more stable table and would not require any electricity or motor to adjust. The table also was built with a large, smooth tabletop designed specifically for multiple users making art. The highlight feature is the height adjustment which allows the table to adjust between 29 and 42.5 inches. The table requires just one person to raise, and two people to lower. To raise the table, an individual only needs to unlock the legs and then press in a button to activate the gas springs, which raise the table. Once the table is set to the desired height, the table can lock into place securely. To lower the table, one person must activate the gas springs and push down simultaneously with another person pushing down on the other side of the table. There is enough room for three people, depending on the size of the wheelchairs. With no wheelchairs, as many as six people can use the table. Therefore, the specifications were met, since it raises and lowers within the desired range, and it provides a solid surface for multiple users to do art work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.