3 resultados para Inovation models in nets

em University of Connecticut - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthodontic tooth movement requires external orthodontic forces to be converted to cellular signals that result in the coordinated removal of bone on one side of the tooth (compression side) by osteoclasts, and the formation of new bone by osteoblasts on the other side (tension side). The length of orthodontic treatment can take several years, leading to problems of caries, periodontal disease, root resorption, and patient dissatisfaction. It appears that the velocity of tooth movement is largely dependent on the rate of alveolar bone remodeling. Pharmacological approaches to increase the rate of tooth movement are limited due to patient discomfort, severe root resorption, and drug-induced side effects. Recently, externally applied, cyclical, low magnitude forces (CLMF) have been shown to cause an increase in the bone mineral density of long bones, and in the growth of craniofacial structures in a variety of animal models. In addition, CLMF is well tolerated by the patient and produces no known adverse effects. However, its application in orthodontic tooth movement has not been specifically determined. Since factors that increase alveolar bone remodeling enhance the rate of orthodontic tooth movement, we hypothesized that externally applied, cyclical, low magnitude forces (CLMF) will increase the rate of orthodontic tooth movement. In order to test this hypothesis we used an in vivo rat orthodontic tooth movement model. Our specific aims were: Specific Aim 1: To develop an in vivo rat model for tooth movement. We developed a tooth movement model based upon two established rodent models (Ren and Yoshimatsu et al, See Figure 1.). The amount of variation of tooth movement in rats exposed to 25-60 g of mesial force activated viii from the first molar to the incisor for 4 weeks was calculated. Specific Aim 2: To determine the frequency dose response of externally applied, cyclical, low magnitude forces (CLMF) for maximal tooth movement and osteoclast numbers. Our working hypothesis for this aim was that the amount of tooth movement would be dose dependent on the frequency of application of the CLMF. In order to test this working hypothesis, we varied the frequency of the CLMF from 30, 60, 100, and 200 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks, and measured the amount of tooth movement. We also looked at the number of osteoclasts for the different frequencies; we hypothesized an increase in osteoclasts for the dose respnse of different frequencies. Specific Aim 3: To determine the effects of externally applied, cyclical, low magnitude forces (CLMF) on PDL proliferation. Our working hypothesis for this aim was that PDL proliferation would increase with CLMF. In order to test this hypothesis we compared CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) performed on the left side (experimental side), to the non-CLMF side, on the right (control side). This was an experimental study with 24 rats in total. The experimental group contained fifteen (15) rats in total, and they all received a spring plus a different frequency of CLMF. Three (3) received a spring and CLMF at 30 Hz, 0.4N for 10 minutes. Six (6) received a spring and CLMF at 60 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 100 Hz, 0.4N for 10 minutes. Three (3) received a spring and CLMF at 200 Hz, 0.4N for 10 minutes. The control group contained six (6) rats, and received only a spring. An additional ix three (3) rats received CLMF (30 Hz, 0.4N, two times per week, for 10 minutes for 4 weeks) only, with no spring, and were used only for histological purposes. Rats were subjected to the application of orthodontic force from their maxillary left first molar to their left central incisor. In addition some of the rats received externally applied, cyclical, low magnitude force (CLMF) on their maxillary left first molar. micro-CT was used to measure the amount of orthodontic tooth movement. The distance between the maxillary first and second molars, at the most mesial point of the second molar and the most distal point of the first molar (1M-2M distance) were used to evaluate the distance of tooth movement. Immunohistochemistry was performed with TRAP staining and BrdU quantification. Externally applied, cyclical, low magnitude forces (CLMF) do appear to have an effect on the rate, while not significant, of orthodontic tooth movement in rats. It appears that lower CLMF decreases the rate of tooth movement, while higher CLMF increases the rate of tooth movement. Future studies with larger sample sizes are needed to clarify this issue. CLMF does not appear to affect the proliferation in PDL cells, and has no effect on the number of osteoclasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on an order-theoretic approach, we derive sufficient conditions for the existence, characterization, and computation of Markovian equilibrium decision processes and stationary Markov equilibrium on minimal state spaces for a large class of stochastic overlapping generations models. In contrast to all previous work, we consider reduced-form stochastic production technologies that allow for a broad set of equilibrium distortions such as public policy distortions, social security, monetary equilibrium, and production nonconvexities. Our order-based methods are constructive, and we provide monotone iterative algorithms for computing extremal stationary Markov equilibrium decision processes and equilibrium invariant distributions, while avoiding many of the problems associated with the existence of indeterminacies that have been well-documented in previous work. We provide important results for existence of Markov equilibria for the case where capital income is not increasing in the aggregate stock. Finally, we conclude with examples common in macroeconomics such as models with fiat money and social security. We also show how some of our results extend to settings with unbounded state spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between wage premia and concentrations of firm activity may arise due to agglomeration economies or workers sorting by unobserved productivity. A worker's residential location is used as a proxy for their unobservable productivity attributes in order to test whether estimated work location wage premia are robust to the inclusion of these controls. Further, in a locational equilibrium, identical workers must receive equivalent compensation so that after controlling for residential location (housing prices) and commutes workers must be paid the same wages and only wage premia arising from unobserved productivity differences should remain unexplained. The models in this paper are estimated using a sample of male workers residing in 33 large metropolitan areas drawn from the 5% Public Use Microdata Sample (PUMS) from the 2000 U.S. Decennial Census. We find that wages are higher when an individual works in a location that has more workers or a greater density of workers. These agglomeration effects are robust to the inclusion of residential location controls and disappear with the inclusion of commute time suggesting that the effects are not caused by unobserved differences in worker productivity. Extended model specifications suggest that wages increase with the education level of nearby workers and the concentration of workers in an individual's own industry or occupation.