7 resultados para Informal inference
em University of Connecticut - USA
Resumo:
Credit markets with asymmetric information often prefer credit rationing as a profit maximizing device. This paper asks whether the presence of informal credit markets reduces the cost of credit rationing, that is, whether it can alleviate the impact of asymmetric information based on the available information. We used a dynamic general equilibrium model with heterogenous agents to assess this. Using Indian credit market data our study shows that the presence of informal credit market can reduce the cost of credit rationing by separating high risk firms from the low risk firms in the informal market. But even after this improvement, the steady state capital accumulation is still much lower as compared to incentive based market clearing rates. Through self revelation of each firm's type, based on the incentive mechanism, banks can diversify their risk by achieving a separating equilibrium in the loan market. The incentive mechanism helps banks to increase capital accumulation in the long run by charging lower rates and lending relatively higher amount to the less risky firms. Another important finding of this study is that self-revelation leads to very significant welfare improvement, as measured by consumptiuon equivalence.
Resumo:
We show how to do efficient moment based inference using the generalized method of moments (GMM) when data is collected by standard stratified sampling and the maintained assumption is that the aggregate shares are known.
Resumo:
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
Resumo:
Many datasets used by economists and other social scientists are collected by stratified sampling. The sampling scheme used to collect the data induces a probability distribution on the observed sample that differs from the target or underlying distribution for which inference is to be made. If this effect is not taken into account, subsequent statistical inference can be seriously biased. This paper shows how to do efficient semiparametric inference in moment restriction models when data from the target population is collected by three widely used sampling schemes: variable probability sampling, multinomial sampling, and standard stratified sampling.
Resumo:
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
Resumo:
We use a novel dataset and research design to empirically detect the effect of social interactions among neighbors on labor market outcomes. Specifically, using Census data that characterize residential and employment locations down to the city block, we examine whether individuals residing in the same block are more likely to work together than individuals in nearby but not identical blocks. We find significant evidence of social interactions operating at the block level: residing on the same versus nearby blocks increases the probability of working together by over 33 percent. The results also indicate that this referral effect is stronger when individuals are similar in sociodemographic characteristics (e.g., both have children of similar ages) and when at least one individual is well attached to the labor market. These findings are robust across various specifications intended to address concerns related to sorting and reverse causation. Further, having determined the characteristics of a pair of individuals that lead to an especially strong referral effect, we provide evidence that the increased availability of neighborhood referrals has a significant impact on a wide range of labor market outcomes including employment and wages.
Resumo:
This paper examines whether the presence of informal credit markets reduces the cost of credit rationing in terms of growth. In a dynamic general equilibrium framework, we assume that firms are heterogenous with different degrees of risk and households invest in human capital development. With the help of Indian household level data we show that the informal market reduces the cost of rationing by increasing the growth rate by 0.7 percent. This higher growth rate, in the presence of an informal sector, is due to the ability of the informal market to separate the high risk from the low risk firms thanks to better information. But even after such improvement we do not get the optimum outcome. The findings, based on our second question, suggest that the revelation of firms' type, based on incentive compatible pricing, can lead to almost 2 percent higher growth rate as compared to the credit rationing regime with informal sector.