3 resultados para Home economics extension workers.
em University of Connecticut - USA
Resumo:
Recent theoretical work has examined the spatial distribution of unemployment using the efficiency wage model as the mechanism by which unemployment arises in the urban economy. This paper extends the standard efficiency wage model in order to allow for behavioral substitution between leisure time at home and effort at work. In equilibrium, residing at a location with a long commute affects the time available for leisure at home and therefore affects the trade-off between effort at work and risk of unemployment. This model implies an empirical relationship between expected commutes and labor market outcomes, which is tested using the Public Use Microdata sample of the 2000 U.S. Decennial Census. The empirical results suggest that efficiency wages operate primarily for blue collar workers, i.e. workers who tend to be in occupations that face higher levels of supervision. For this subset of workers, longer commutes imply higher levels of unemployment and higher wages, which are both consistent with shirking and leisure being substitutable.
Resumo:
We examine the time-series relationship between housing prices in Los Angeles, Las Vegas, and Phoenix. First, temporal Granger causality tests reveal that Los Angeles housing prices cause housing prices in Las Vegas (directly) and Phoenix (indirectly). In addition, Las Vegas housing prices cause housing prices in Phoenix. Los Angeles housing prices prove exogenous in a temporal sense and Phoenix housing prices do not cause prices in the other two markets. Second, we calculate out-of-sample forecasts in each market, using various vector autoregessive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different cities. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.
Resumo:
This paper uses Bayesian vector autoregressive models to examine the usefulness of leading indicators in predicting US home sales. The benchmark Bayesian model includes home sales, the price of homes, the mortgage rate, real personal disposable income, and the unemployment rate. We evaluate the forecasting performance of six alternative leading indicators by adding each, in turn, to the benchmark model. Out-of-sample forecast performance over three periods shows that the model that includes building permits authorized consistently produces the most accurate forecasts. Thus, the intention to build in the future provides good information with which to predict home sales. Another finding suggests that leading indicators with longer leads outperform the short-leading indicators.