4 resultados para Hippocampal Pyramidal Neurons

em University of Connecticut - USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian cerebral neocortex is a complex six-layered structure containing multiple types of neurons. Pyramidal neurons of the neocortex are formed during development in an inside-out manner, by which deep layer (DL) neurons are generated first, and upper layer (UL) neurons are generated last. Neurons within the six-layered neocortex express unique markers for their position, showing whether they are subplate, deep layer, upper layer, or Cajal-Retzius neurons. The sequential generation of cortical layers, which exists in vivo, has been partially recapitulated in vitro by differentiation of mouse embryonic stem cells (Gaspard et al., 2008) and human embryonic stem cells (hESC) (Eiraku et al., 2008). The timeline of generation of cortical neurons from hESC is still not well defined, and could be very important in the future of cell therapy. In this study we will define timeline for UL and DL neurons for our experimental paradigm as well as test the effects of fibroblast growth factors (FGF) 2 and 8 on this neuronal differentiation. Recent papers suggest that FGFs are critical for forebrain patterning (Storm et al., 2003). Neuronal differentiation after treatment with either FGF2 or FGF8 from hESCs will be examined and the proportion of specific neuronal markers will be analyzed using immunocytochemistry. Our results show that the generated pyramidal neurons will express DL and UL laminar markers in vitro as they do in vivo and that the presence of FGF8 in induction media creates a proliferative effect, while FGF2 induces hESC to differentiate at a higher rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radial Glia (RG) are a mitotically active population of cells which reside within the ventricular zone at the lateral ventricle and give rise to the pyramidal neurons and astrocytes of the neocortex. Through cellular divisions, RG produce two daughter cells, one which resides in the ventricular zone and becomes another RG while the other is an immature progenitor which migrates away from the ventricle and populates the growing cortex. RG have been found to be a heterogeneous population of cells which express different surface antigens and genetic promoters which may influence the cellular fate of their progeny. In this study we have investigated the progenitor profiles of two promoters, nestin (a neural intermediate filament) and GLAST (astrocyte specific glutamate transporter) within the RG. In-utero electroporation was used to transfect reporter plasmids under the control of promoter driven Cre-Recombinase into the RG lining the lateral ventricle during mid-neurogensesis (E14). It was found that there was a large amount of overlap between the nestin and GLAST expressing populations of RG, however, there was still a small subset of cells which exclusively expressed GLAST. This prompted us to investigate the lineage of these two promoters using the PiggyBac transposon system which uses promoter driven episomal plasmids to incorporate a reporter gene into the genome of the transfected cells, allowing use to trace their full progeny. Our data shows that nestin expressing RG generate mostly neurons and few astrocytes while the GLAST expressing RG generate a greater proportion of astrocytes to neurons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Developmental Dyslexia is a reading disorder that affects individuals that possess otherwise normal intelligence. Until the four candidate dyslexia susceptibility genes were discovered, the cause of cortical malformations found in post mortem dyslexic brains was unclear. Normal brain development is crucial for the proper wiring of the neural circuitry that allow an individual to perform cognitive tasks like reading. For years, familial and twin studies have suggested that there was a genetic basis to the causation of dyslexia. Kiaa0319 was among the candidate dyslexia susceptibility genes that were ascertained. KIAA0319 is located on Chromosome 6p22.2-22.3 and has been found to exhibit differential spatial-temporal expression patterns in the brain throughout development, which suggests that the polycystic kidney disease (PKD) domain encoded by KIAA0319 facilitates cell-cell adhesion to enable neuronal precursors to crawl up the radial glia during neuronal migration. With the knowledge of KIAA0319 involvement in early neurogenesis, we were interested in determining how different KIAA0319 expression may impact cortical neurons in layer II and III during early adulthood. We show that KIAA0319 knockdown in cortical pyramidal neurons significantly reduces the dendritic spine density. Studies have shown that changes in dendritic spine morphology and density affect properties of neural circuitry. Henceforth, this finding may reveal a link between the Kiaa0319 gene and the deficit of the neural processing task of reading due to reduced spines density. Finding a correlation between Kiaa0319 expression and its influence on dendritic spine development may lead to a greater insight of a direct link between the dyslexia susceptibility gene and the biological mechanism that causes dyslexia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic respiratory illnesses are a significant cause of morbidity and mortality, and acute changes in respiratory function often lead to hospitalization. Air pollution is known to exacerbate asthma, but the molecular mechanisms of this are poorly understood. The current studies were aimed at clarifying the roles of nerve subtypes and purinergic receptors in respiratory reflex responses following exposure to irritants. In C57Bl/6J female mice, inspired adenosine produced sensory irritation, shown to be mediated mostly by A-delta fibers. Secondly, the response to inhaled acetic acid was discovered to be dually influenced by C and A-delta fibers, as indicated by the observed effects of capsaicin pretreatment, which selectively destroys TRPV1-expressing fibers (mostly C fibers) and pretreatment with theophylline, a nonselective adenosine receptor antagonist. The responses to both adenosine and acetic acid were enhanced in the ovalbumin-allergic airway disease model, although the particular pathway altered is still unknown.