2 resultados para Glutamate exitotoxicity
em University of Connecticut - USA
Resumo:
The dorsal cochlear nucleus (DCN) receives auditory information via the auditory nerve coming from the cochlea. It is responsible for much of the integration of auditory information, and it projects this auditory information to higher auditory brain centers for further processing. This study focuses on the DCN of adult Rhesus monkeys to characterize two specific cell types, the fusiform and cartwheel cell, based on morphometric parameters and type of glutamate receptor they express. The fusiform cell is the main projection neuron, while the cartwheel cell is the main inhibitory interneuron. Expression of AMPA glutamate receptor subunits is localized to certain cell types. The activity of the CN depends on the AMPA receptor subunit composition and expression. Immunocytochemistry, using specific antibodies for AMPA glutamate receptor subunits GluR1, GluR2/3 and GluR4, was used in conjunction with morphometry to determine the location, morphological characteristics and expression of AMPA receptor subunits in fusiform and cartwheel cells in the primate DCN. Qualitative as well as quantitative data indicates that there are important morphological differences in cell location and expression of AMPA glutamate receptor subunits between the rodent DCN and that of primates. GluR2/3 is widely expressed in the primate DCN. GluR1 is also widely expressed in the primate DCN. GluR4 is diffusely expressed. Expression of GluR2/3 and GluR4 in the primate is similar to that of the rodent. However, expression of GluR1 is different. GluR1 is only expressed by cartwheel cells in the rodent DCN, but is expressed by a variety of cells, including fusiform cells, in the DCN of the primate.
Resumo:
Radial Glia (RG) are a mitotically active population of cells which reside within the ventricular zone at the lateral ventricle and give rise to the pyramidal neurons and astrocytes of the neocortex. Through cellular divisions, RG produce two daughter cells, one which resides in the ventricular zone and becomes another RG while the other is an immature progenitor which migrates away from the ventricle and populates the growing cortex. RG have been found to be a heterogeneous population of cells which express different surface antigens and genetic promoters which may influence the cellular fate of their progeny. In this study we have investigated the progenitor profiles of two promoters, nestin (a neural intermediate filament) and GLAST (astrocyte specific glutamate transporter) within the RG. In-utero electroporation was used to transfect reporter plasmids under the control of promoter driven Cre-Recombinase into the RG lining the lateral ventricle during mid-neurogensesis (E14). It was found that there was a large amount of overlap between the nestin and GLAST expressing populations of RG, however, there was still a small subset of cells which exclusively expressed GLAST. This prompted us to investigate the lineage of these two promoters using the PiggyBac transposon system which uses promoter driven episomal plasmids to incorporate a reporter gene into the genome of the transfected cells, allowing use to trace their full progeny. Our data shows that nestin expressing RG generate mostly neurons and few astrocytes while the GLAST expressing RG generate a greater proportion of astrocytes to neurons.