2 resultados para Formation human
em University of Connecticut - USA
Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes.
Resumo:
Glutathione oxidants such as tertiary butyl hydroperoxide were shown previously to prevent microtubule assembly and cause breakdown of preassembled cytoplasmic microtubules in human polymorphonuclear leukocytes. The objectives of the present study were to determine the temporal relationship between the attachment and ingestion of phagocytic particles and the assembly of microtubules, and simultaneously to quantify the levels of reduced glutathione and products of its oxidation as potential physiological regulators of assembly. Polymorphonuclear leukocytes from human peripheral blood were induced to phagocytize opsonized zymosan at 30 degrees C. Microtubule assembly was assessed in the electron microscope by direct counts of microtubules in thin sections through centrioles. Acid extracts were assayed for reduced glutathione (GSH) and oxidized glutathione (GSSG), by the sensitive enzymatic procedure of Tietze. Washed protein pellets were assayed for free sulfhydryl groups and for mixed protein disulfides with glutathione (protein-SSG) after borohydride splitting of the disulfide bond. Resting cells have few assembled microtubules. Phagocytosis induces a cycle of rapid assembly followed by disassembly. Assembly is initiated by particle contact and is maximal by 3 min of phagocytosis. Disassembly after 5-9 min of phagocytosis is preceded by a slow rise in GSSG and coincides with a rapid rise in protein-SSG. Protein-SSG also increases under conditions in which butyl hydroperoxide inhibits the assembly of microtubules that normally follows binding of concanavalin A to leukocyte cell surface receptors. No evidence for direct involvement of GSH in the induction of assembly was obtained. The formation of protein-SSG, however, emerges as a possible regulatory mechanism for the inhibition of microtubule assembly and induction of their disassembly.
Resumo:
The purpose of this research is to explore the growth and formation of the head and neck from embryological development through puberty in order to understand how this knowledge is necessary for the development of dental and medical treatments and procedures. This is a necessary aspect of the medical and dental school curriculum at the University of Connecticut Health Center Schools of Medicine and Dental Medicine that needs to be incorporated into the current study of embryology for first-year students. Working with Dr. Christine Niekrash, D.M.D, this paper will cover the embryology and growth of the head, face and oral cavity. The goal of this project will be to organize the information and recognize the resources needed to successfully introduce this part of human physiology to the UConn dental and medical students. One area in which this information is particularly relevant is the facial and oral deformities that can occur throughout fetal development.