6 resultados para Forecasting Volatility
em University of Connecticut - USA
Resumo:
This study examines the effect of the Great Moderation on the relationship between U.S. output growth and its volatility over the period 1947 to 2006. First, we consider the possible effects of structural change in the volatility process. In so doing, we employ GARCH-M and ARCH-M specifications of the process describing output growth rate and its volatility with and without a one-time structural break in volatility. Second, our data analyses and empirical results suggest no significant relationship between the output growth rate and its volatility, favoring the traditional wisdom of dichotomy in macroeconomics. Moreover, the evidence shows that the time-varying variance falls sharply or even disappears once we incorporate a one-time structural break in the unconditional variance of output starting 1982 or 1984. That is, the integrated GARCH effect proves spurious. Finally, a joint test of a trend change and a one-time shift in the volatility process finds that the one-time shift dominates.
Resumo:
Previous studies (e.g., Hamori, 2000; Ho and Tsui, 2003; Fountas et al., 2004) find high volatility persistence of economic growth rates using generalized autoregressive conditional heteroskedasticity (GARCH) specifications. This paper reexamines the Japanese case, using the same approach and showing that this finding of high volatility persistence reflects the Great Moderation, which features a sharp decline in the variance as well as two falls in the mean of the growth rates identified by Bai and Perronâs (1998, 2003) multiple structural change test. Our empirical results provide new evidence. First, excess kurtosis drops substantially or disappears in the GARCH or exponential GARCH model that corrects for an additive outlier. Second, using the outlier-corrected data, the integrated GARCH effect or high volatility persistence remains in the specification once we introduce intercept-shift dummies into the mean equation. Third, the time-varying variance falls sharply, only when we incorporate the break in the variance equation. Fourth, the ARCH in mean model finds no effects of our more correct measure of output volatility on output growth or of output growth on its volatility.
Resumo:
This paper empirically assesses whether monetary policy affects real economic activity through its affect on the aggregate supply side of the macroeconomy. Analysts typically argue that monetary policy either does not affect the real economy, the classical dichotomy, or only affects the real economy in the short run through aggregate demand new Keynesian or new classical theories. Real business cycle theorists try to explain the business cycle with supply-side productivity shocks. We provide some preliminary evidence about how monetary policy affects the aggregate supply side of the macroeconomy through its affect on total factor productivity, an important measure of supply-side performance. The results show that monetary policy exerts a positive and statistically significant effect on the supply-side of the macroeconomy. Moreover, the findings buttress the importance of countercyclical monetary policy as well as support the adoption of an optimal money supply rule. Our results also prove consistent with the effective role of monetary policy in the Great Moderation as well as the more recent rise in productivity growth.
Resumo:
This paper revisits the issue of conditional volatility in real GDP growth rates for Canada, Japan, the United Kingdom, and the United States. Previous studies find high persistence in the volatility. This paper shows that this finding largely reflects a nonstationary variance. Output growth in the four countries became noticeably less volatile over the past few decades. In this paper, we employ the modified ICSS algorithm to detect structural change in the unconditional variance of output growth. One structural break exists in each of the four countries. We then use generalized autoregressive conditional heteroskedasticity (GARCH) specifications modeling output growth and its volatility with and without the break in volatility. The evidence shows that the time-varying variance falls sharply in Canada, Japan, and the U.K. and disappears in the U.S., excess kurtosis vanishes in Canada, Japan, and the U.S. and drops substantially in the U.K., once we incorporate the break in the variance equation of output for the four countries. That is, the integrated GARCH (IGARCH) effect proves spurious and the GARCH model demonstrates misspecification, if researchers neglect a nonstationary unconditional variance.
Resumo:
We examine the time-series relationship between housing prices in Los Angeles, Las Vegas, and Phoenix. First, temporal Granger causality tests reveal that Los Angeles housing prices cause housing prices in Las Vegas (directly) and Phoenix (indirectly). In addition, Las Vegas housing prices cause housing prices in Phoenix. Los Angeles housing prices prove exogenous in a temporal sense and Phoenix housing prices do not cause prices in the other two markets. Second, we calculate out-of-sample forecasts in each market, using various vector autoregessive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different cities. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.
Resumo:
We develop coincident and leading employment indexes for the Connecticut economy. Four employment-related variables enter the coincident index while five employment-related variables enter the leading index. The peaks and troughs in the leading index lead the peaks and troughs in the coincident index by an average of 3 and 9 months. Finally, we use the leading index in vector-autoregressive (VAR) and Bayesian vector-autoregressive (BVAR) models to forecast the coincident index, nonfarm employment, and the unemployment rate.