3 resultados para FOCK-SLATER CALCULATIONS

em University of Connecticut - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using properties of moment stationarity we develop exact expressions for the mean and covariance of allele frequencies at a single locus for a set of populations subject to drift, mutation, and migration. Some general results can be obtained even for arbitrary mutation and migration matrices, for example: (1) Under quite general conditions, the mean vector depends only on mutation rates, not on migration rates or the number of populations. (2) Allele frequencies covary among all pairs of populations connected by migration. As a result, the drift, mutation, migration process is not ergodic when any finite number of populations is exchanging genes. in addition, we provide closed form expressions for the mean and covariance of allele frequencies in Wright's finite-island model of migration under several simple models of mutation, and we show that the correlation in allele frequencies among populations can be very large for realistic rates of mutation unless an enormous number of populations are exchanging genes. As a result, the traditional diffusion approximation provides a poor approximation of the stationary distribution of allele frequencies among populations. Finally, we discuss some implications of our results for measures of population structure based on Wright's F-statistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The difficulties of applying the Hartree-Fock method to many body problems is illustrated by treating Helium's electrons up to the point where tractability vanishes. Second, the problem of applying Hartree-Fock methods to the helium atom's electrons, when they are constrained to remain on a sphere, is revisited. The 6-dimensional total energy operator is reduced to a 2-dimensional one, and the application of that 2-dimensional operator in the Hartree-Fock mode is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hartree-Fock method is applied to Helium's electrons to show explicitly how the coupled equations reflect the interactions between electrons.