6 resultados para Explanatory Variables Effect
em University of Connecticut - USA
Resumo:
Increasing levels of segregation in American schools raises the question: do home buyers pay for test scores or demographic composition? This paper uses Connecticut panel data spanning eleven years from 1994 to 2004 to ascertain the relationship between property values and explanatory variables that include school district performance and demographic attributes, such as racial and ethnic composition of the student body. Town and census tract fixed effects are included to control for neighborhood unobservables. The effect of changes in school district attributes is also examined over a decade long time frame in order to focus on the effect of long run changes, which are more likely to be capitalized into prices. The study finds strong evidence that increases in percent Hispanic has a negative effect on housing prices in Connecticut, but mixed evidence concerning the impact of test scores on property values. Evidence is also found to suggest that student test scores have increased in importance for explaining housing prices in recent years while the importance of percent Hispanic has declined. Finally, the study finds that estimates of property tax capitalization increase substantially when the analysis focuses on long run changes.
Resumo:
In applied work economists often seek to relate a given response variable y to some causal parameter mu* associated with it. This parameter usually represents a summarization based on some explanatory variables of the distribution of y, such as a regression function, and treating it as a conditional expectation is central to its identification and estimation. However, the interpretation of mu* as a conditional expectation breaks down if some or all of the explanatory variables are endogenous. This is not a problem when mu* is modelled as a parametric function of explanatory variables because it is well known how instrumental variables techniques can be used to identify and estimate mu*. In contrast, handling endogenous regressors in nonparametric models, where mu* is regarded as fully unknown, presents di±cult theoretical and practical challenges. In this paper we consider an endogenous nonparametric model based on a conditional moment restriction. We investigate identification related properties of this model when the unknown function mu* belongs to a linear space. We also investigate underidentification of mu* along with the identification of its linear functionals. Several examples are provided in order to develop intuition about identification and estimation for endogenous nonparametric regression and related models.
Resumo:
Consider a nonparametric regression model Y=mu*(X) + e, where the explanatory variables X are endogenous and e satisfies the conditional moment restriction E[e|W]=0 w.p.1 for instrumental variables W. It is well known that in these models the structural parameter mu* is 'ill-posed' in the sense that the function mapping the data to mu* is not continuous. In this paper, we derive the efficiency bounds for estimating linear functionals E[p(X)mu*(X)] and int_{supp(X)}p(x)mu*(x)dx, where p is a known weight function and supp(X) the support of X, without assuming mu* to be well-posed or even identified.
Resumo:
This paper examines the role of uncertainty and imperfect local knowledge in foreign direct investment. The main idea comes from the literature on investment under uncertainty, such as Pindyck (1991) and Dixit and Pindyck (1994). We empirically test .the value of waiting. with a dataset on foreign direct investment (FDI). Many factors (e.g., political and economic regulations) as well as uncertainty and the risks due to imperfect local knowledge, determine the attractiveness of FDI. The uncertainty and irreversibility of FDI links the time interval between permission and actual execution of such FDI with explanatory variables, including information on foreign (home) countries and domestic industries. Common factors, such as regulatory change and external shocks, may affect the uncertainty when foreign investors make irreversible FDI decisions. We derive testable hypotheses from models of investment under uncertainty to determine those possible factors that induce delays in FDI, using Korean data over 1962 to 2001.
Resumo:
The Data Envelopment Analysis (DEA) efficiency score obtained for an individual firm is a point estimate without any confidence interval around it. In recent years, researchers have resorted to bootstrapping in order to generate empirical distributions of efficiency scores. This procedure assumes that all firms have the same probability of getting an efficiency score from any specified interval within the [0,1] range. We propose a bootstrap procedure that empirically generates the conditional distribution of efficiency for each individual firm given systematic factors that influence its efficiency. Instead of resampling directly from the pooled DEA scores, we first regress these scores on a set of explanatory variables not included at the DEA stage and bootstrap the residuals from this regression. These pseudo-efficiency scores incorporate the systematic effects of unit-specific factors along with the contribution of the randomly drawn residual. Data from the U.S. airline industry are utilized in an empirical application.
Resumo:
Interactions between students and faculty outside of class appear to be linked to greater achievement during and after college (Anaya & Cole, 2001; Hathaway, Nagda, & Gregerman, 2002). However, sometimes there can be blurred personal boundaries and a lack of autonomy in relationships or what has been labeled enmeshment. The purpose of the current pilot study was to investigate the effect of race/ethnicity, gender, year in college, and college major on faculty-student relationships and teacher enmeshment. Teacher enmeshment was measured with the Teacher Enmeshment subscale of the Separation-Individuation Test of Adolescence (SITA; Levine & Saintonge, 1993). A sample of 165 undergraduate and graduate students from education and psychology classes at a small, private liberal arts institution in the Northeast participated. No significant differences among the different demographic groups were found on the total teacher enmeshment score. However, significant differences were found among students with different majors, by gender, and by race on individual items. Implications of these findings and suggestions for future research are provided.