2 resultados para Empirical orthogonal function
em University of Connecticut - USA
Resumo:
In this paper, we extend the debate concerning Credit Default Swap valuation to include time varying correlation and co-variances. Traditional multi-variate techniques treat the correlations between covariates as constant over time; however, this view is not supported by the data. Secondly, since financial data does not follow a normal distribution because of its heavy tails, modeling the data using a Generalized Linear model (GLM) incorporating copulas emerge as a more robust technique over traditional approaches. This paper also includes an empirical analysis of the regime switching dynamics of credit risk in the presence of liquidity by following the general practice of assuming that credit and market risk follow a Markov process. The study was based on Credit Default Swap data obtained from Bloomberg that spanned the period January 1st 2004 to August 08th 2006. The empirical examination of the regime switching tendencies provided quantitative support to the anecdotal view that liquidity decreases as credit quality deteriorates. The analysis also examined the joint probability distribution of the credit risk determinants across credit quality through the use of a copula function which disaggregates the behavior embedded in the marginal gamma distributions, so as to isolate the level of dependence which is captured in the copula function. The results suggest that the time varying joint correlation matrix performed far superior as compared to the constant correlation matrix; the centerpiece of linear regression models.
Resumo:
Lovell and Rouse (LR) have recently proposed a modification of the standard DEA model that overcomes the infeasibility problem often encountered in computing super-efficiency. In the LR procedure one appropriately scales up the observed input vector (scale down the output vector) of the relevant super-efficient firm thereby usually creating its inefficient surrogate. An alternative procedure proposed in this paper uses the directional distance function introduced by Chambers, Chung, and Färe and the resulting Nerlove-Luenberger (NL) measure of super-efficiency. The fact that the directional distance function combines features of both an input-oriented and an output-oriented model, generally leads to a more complete ranking of the observations than either of the oriented models. An added advantage of this approach is that the NL super-efficiency measure is unique and does not depend on any arbitrary choice of a scaling parameter. A data set on international airlines from Coelli, Perelman, and Griffel-Tatje (2002) is utilized in an illustrative empirical application.