2 resultados para Embryos and larvae
em University of Connecticut - USA
Resumo:
In vitro culture for bovine embryos is largely not optimal. Our study was to determine the components necessary for early embryo development. In experiment 1, IVF embryos were cultured for two days in CR1aa medium containing sodium citrate and BSA from two sources (Sigma vs. ICPbio), subsequently for additional five days with cumulus monolayer in 10% FBS CR1aa. We found that supplementation with both Sigma-BSA and sodium citrate significantly increased total blastocyst (BL) development compared with the ICPbio-BSA groups (37% vs. 19-21%), and enhanced the total number of high quality (C1 BL, IETS standard) blastocysts (26% vs. 11-17%) (P < 0.05). In experiment 2 with serum free and/or somatic free culture, we found that CR1aa culture can support a comparable embryo development with a supplement of Sigma BSA. The addition of sodium citrate did not increase blastocyst development in either the Sigma-BSA or the ICPbio-BSA groups. An inferior blastocyst development occurring in ICPbio-BSA culture (1-3%) could be rescued by culture in CRlaa supplemented with 10% FBS (29%), more importantly, by culture in CR1aa with a replacement of Sigma BSA (24%) (P <0.05). C1 blastocysts rescued by FBS and Sigma BSA in ICPbio-BSA culture possessed indistinguishable morphology to embryos developed in a Sigma-BSA, FBS and somatic co-culture system, showing similar cell number/blastocyst (129-180, P > 0.05). Our study found a beneficial effect of sodium citrate and BSA on the in vitro development of bovine IVF embryos during co-culture. We also determined that differential embryotrophic factor(s) contained in BSA and serum, probably not sodium citrate, is necessary for promoting competent morula and blastocyst development in cattle.
Resumo:
The ability to respond plastically to the environment has allowed amphibians to evolve a response to spatial and temporal variation in predation threat (Benard 2004). Embroys exposed to egg predation are expected to hatch out earlier than their conspecifics. Larval predation can induce a suite of phenotypic changes including growing a larger tail area. When presented with cues from both egg and larval predators, embryos are expected to respond to the egg predator by hatching out earlier because the egg predator presents an immediate threat. However, hatching early may be costly in the larval environment in terms of development, morphology, and/or behavior. We created a laboratory experiment in which we exposed clutches of spotted salamander (Ambystoma maculatum) eggs to both egg (caddisfly larvae) and larval (A. opacum) predators to test this hypothesis. We recorded hatching time and stage and took developmental and morphological data of the animals a week after hatching. Larvae were entered into lethal predation trials with a larval predatory sunfish (Lepomis sp.) in order to study behavior. We found that animals exposed to the egg predator cues hatched out earlier and at earlier developmental stages than conspecifics regardless of whether there was a larval predator present. Animals exposed to larval predator cues grew relatively larger tails and survived longer in the lethal predation trials. However the group exposed to both predators showed a cost of early hatching in terms of lower tail area and shorter survival time in predation trials. The morphological and developmental effects measured of hatching plasticity were transient as there were no developmental or morphological differences between the treatment groups at metamorphosis. Hatching plasticity may be transient but it is important to the development and survival of many amphibians.