3 resultados para Data Organization
em University of Connecticut - USA
Resumo:
The Indian textiles industry is now at the crossroads with the phasing out of quota regime that prevailed under the Multi-Fiber Agreement (MFA) until the end of 2004. In the face of a full integration of the textiles sector in the WTO, maintaining and enhancing productive efficiency is a precondition for competitiveness of the Indian firms in the new liberalized world market. In this paper we use data obtained from the Annual Survey of Industries for a number of years to measure the levels of technical efficiency in the Indian textiles industry at the firm level. We use both a grand frontier applicable to all firms and a group frontier specific to firms from any individual state, ownership, or organization type in order to evaluate their efficiencies. This permits us to separately identify how locational, proprietary, and organizational characteristics of a firm affect its performance.
Resumo:
The first professional base ball clubs came in two varieties: stock clubs, which paid their players fixed wages, and player cooperatives, in which players shared the proceeds after expenses. We argue that stock clubs were formed with players of known ability, while co-ops were formed with players of unknown ability. Although residual claimancy served to screen out players of inferior ability in co-ops, the process was imperfect due to the team production problem. Based on this argument, we suggest that co-ops functioned as an early minor league system where untried players could seek to prove themselves and eventually move up to wage teams. Empirical analysis of data on player performance and experience in early professional base ball provides support for the theory.
Resumo:
The State of Connecticut owns a LIght Detection and Ranging (LIDAR) data set that was collected in 2000 as part of the State’s periodic aerial reconnaissance missions. Although collected eight years ago, these data are just now becoming ready to be made available to the public. These data constitute a massive “point cloud”, being a long list of east-north-up triplets in the State Plane Coordinate System Zone 0600 (SPCS83 0600), orthometric heights (NAVD 88) in US Survey feet. Unfortunately, point clouds have no structure or organization, and consequently they are not as useful as Triangulated Irregular Networks (TINs), digital elevation models (DEMs), contour maps, slope and aspect layers, curvature layers, among others. The goal of this project was to provide the computational infrastructure to create a first cut of these products and to serve them to the public via the World Wide Web. The products are available at http://clear.uconn.edu/data/ct_lidar/index.htm.