3 resultados para Collins moment
em University of Connecticut - USA
Resumo:
Using properties of moment stationarity we develop exact expressions for the mean and covariance of allele frequencies at a single locus for a set of populations subject to drift, mutation, and migration. Some general results can be obtained even for arbitrary mutation and migration matrices, for example: (1) Under quite general conditions, the mean vector depends only on mutation rates, not on migration rates or the number of populations. (2) Allele frequencies covary among all pairs of populations connected by migration. As a result, the drift, mutation, migration process is not ergodic when any finite number of populations is exchanging genes. in addition, we provide closed form expressions for the mean and covariance of allele frequencies in Wright's finite-island model of migration under several simple models of mutation, and we show that the correlation in allele frequencies among populations can be very large for realistic rates of mutation unless an enormous number of populations are exchanging genes. As a result, the traditional diffusion approximation provides a poor approximation of the stationary distribution of allele frequencies among populations. Finally, we discuss some implications of our results for measures of population structure based on Wright's F-statistics.
Resumo:
Many datasets used by economists and other social scientists are collected by stratified sampling. The sampling scheme used to collect the data induces a probability distribution on the observed sample that differs from the target or underlying distribution for which inference is to be made. If this effect is not taken into account, subsequent statistical inference can be seriously biased. This paper shows how to do efficient semiparametric inference in moment restriction models when data from the target population is collected by three widely used sampling schemes: variable probability sampling, multinomial sampling, and standard stratified sampling.