2 resultados para Canopy

em University of Connecticut - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient leaching studies are expensive and require expertise in water collection and analyses. Less expensive or easier methods that estimate leaching losses would be desirable. The objective of this study was to determine if anion-exchange membranes (AEMs) and reflectance meters could predict nitrate (NO3-N) leaching losses from a cool-season lawn turf. A two-year field study used an established 90% Kentucky bluegrass (Poa pratensis L.)-10% creeping red fescue (Festuca rubra L.) turf that received 0 to 98 kg N ha-1 month-1, from May through November. Soil monolith lysimeters collected leachate that was analyzed for NO3-N concentration. Soil NO3-N was estimated with AEMs. Spectral reflectance measurements of the turf were obtained with chlorophyll and chroma meters. No significant (p > 0.05) increase in percolate flow-weighted NO3-N concentration (FWC) or mass loss occurred when AEM desorbed soil NO3-N was below 0.84 µg cm-2 d-1. A linear increase in FWC and mass loss (p < 0.0001) occurred, however, when AEM soil NO3-N was above this value. The maximum contaminant level (MCL) for drinking water (10 mg L-1 NO3-N) was reached with an AEM soil NO3-N value of 1.6 µg cm-2 d-1. Maximum meter readings were obtained when AEM soil NO3 N reached or exceeded 2.3 µg cm-2 d-1. As chlorophyll index and hue angle (greenness) increased, there was an increased probability of exceeding the NO3-N MCL. These data suggest that AEMs and reflectance meters can serve as tools to predict NO3-N leaching losses from cool-season lawn turf, and to provide objective guides for N fertilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated tree sway and crown collision behavior of even-aged lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands of different structure in Alberta, Canada, to examine how these factors might affect loss of leaf area as stands mature. The Two Creeks stand (TC) had high density and slender trees, while the Chickadee stand (CH) had stout trees. The TC stand was then thinned (TCT) to reduce the stand density. For each stand, simultaneous tree sways of a group of 10 trees were monitored with biaxial clinometers during wind speed of 5 m/s (canopy top). Crown collisions were reconstructed by combining sway displacement of individual trees with their respective crown dimensions. Comparing the sway statistics between stands with contrasting mean bole slenderness (TC and CH) indicated that more slender trees have greater sway displacements, faster sway speeds, and a greater depth of collision. Disturbance by thinning increased sway displacements, sway speeds, and depth of collisions at TCT. Tree sway patterns were circular in shape and not aligned with wind direction, but patterns were elongated after thinning. This demonstrates the high frequency of crown collision experienced by stands with slender trees and supports the notion that crown collisions result in empty space between crowns of trees.