2 resultados para CELL-WALL
em University of Connecticut - USA
Resumo:
Plant cell walls largely consist of matrix polysaccharides that are linked to cellulose microfibrils. Xyloglucan, the primary hemicellulose of the cell wall matrix, consists of a repeating glucose tetramer structure with xylose residues attached to the first three units ('XXXG'). In Arabidopsis thaliana, the core XXXG structure is further modified by enzymatic addition of galactose and fucose residues to the xylose side chains to produce XLXG, XXLG, XLLG and XLFG structures. GT14 is a putative glycosyltransferase in the GT47 gene family. Initial predictions of GT14's hydrophobic regions, based on its translated amino acid sequence, are almost identical to its Arabidopsis homolog MUR3, which is a xyloglucan galactosyltransferase targeted to the Golgi membrane. This suggests that, like MUR3, GT14 possesses a transmembrane domain and that it is targeted to the Golgi. The monosaccharide composition of leaves from T-DNA insertion knockouts of GT14 was analyzed by gas-liquid chromatography. The gt14 plants were found to have lower fucose and higher mannose contents than wild type plants. Analysis of cell wall and soluble fractions from gt14 and wild type plants revealed that most of the deficiency in fucose was accounted for in the cell wall, supporting the idea that GT14's target is xyloglucan. Finally, gt14 and wild type plants were transformed with GT14 for complementation and overexpression analysis. The majority of transformed plants did not show significant changes with regard to monosaccharide composition. This may be because the plants were in the T1 generation and, thus, hemizygous. Analysis of homozygous plants in the T2 generation may reveal noticeable changes. Further studies on the xyloglucan composition of gt14 plants are necessary to put the observed reduction in cell wall fucose into a meaningful context.
Resumo:
The synthesis of the plant cell wall is very complex, and understanding how this process occurs will lead to many benefits for future research and industries dependent upon cell walls for their products. The recent discovery of the functions of AtMUR3 and AtGT18 in Arabidopsis thaliana as xyloglucan galactosyltransferases has led to the identification of many more putative glycosyltransferases in the Arabidopsis genome. Due to the structural differences between the xyloglucans of Arabidopsis and solanaceous plants, we decided to search for putative arabinosyltransferases in the Solanaceae. Solanaceous xyloglucan is substituted by one to two arabinosyl residues at the second xylose position, and sometimes contains an arabinose at the first xylose position. In contrast, Arabidopsis xyloglucan does not contain arabinose, and is substituted by galactose at the second and third xylose position. Furthermore, the second galactose residue in Arabidopsis xyloglucan is usually fucosylated, a modification not found in solanaceous plants. Searching the database of expressed sequence tags (dbEST), we identified many likely glycosyltransferases in solanaceous plants, including tomato (Lycopersicon esculentum). AtMUR3 and AtGT18 search queries resulted in the identification of three putative glycosyltransferases in L. esculentum, which were tentatively designated LeGT1, Le1GT18, and Le2GT18. Based on phylogenetic considerations, Le2GT18 was thought to be a putative arabinosyltransferase. The gene was transformed into atmur3-3 and atgt18 mutant plants, and the resulting plants will be screened for homozygous plants with the inserted gene. The homozygous T2 plants can then be screened for changes in the composition of their cell walls. Because Le2GT18 is thought to be an arabinosyltransferase, the levels of arabinose may be increased in the xyloglucan fraction of the cell wall. If so, further testing can be performed to reveal the true function of Le2GT18.